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Multi-unit recordings from the optic tectum of an awake pigeon displaying oscillatory behavior evoked by visual stimulus are highly 
non-stationary and contain a broad band of frequencies under a time-window analysis. Here we extend these observations by a non-linear 
dynamical analysis of these oscillatory signals (local fields potentials) in successive epochs during background activity and visual responses. Two 
numerical estimates have been obtained from the original data every 200 ms: (1) correlation dimension and (2) non-linear forecasting of the 
trajectories. Results fmm eight different recording sites analyzed are consistent and indicate. in the average, an increase in complexity of the 
signal during the oscillatory periods. 

INTRODUCTION 

The hypothesis that neuronal synchronization can 
provide a mechanism to integrate the activity of the 
neurons underlying a perceptual task has received a 
fair amount of attention recently (see ref. 8 for review). 
The interest stems from the recognized need to ac- 
count for cognitive processes by the activity of a coher- 
ent population of cells, a neuronal ensemble, and not 
by the isolated observation of single neuronal re- 
sponses . ‘J~*-M In these studies, cell assemblies are 
viewed as dynamical entities that arise from a transi- 
tory phase-locking of activity between their elements, 
binding distinct regions in the brain. 

The biological reality of the synchronization mecha- 
nism was first suggested by behavioral studies of olfac- 
tory discrimination in the rabbit, where macro poten- 
tials showed coherent oscillations in response to moti- 
vation and learning ‘“J ‘. More recently, synchronized 
responses (multi-unit activity) have been demonstrated 
in other structures, most extensively in the visual cortex 
of lightly anesthetized catsh*7*‘4*‘5, but also in the visual 
and somatosensory corux of monkeys’9~20*“, and in the 

avian optic tectum 24-26. In alI these studies, neurons 
tend to assume a structured firing in response to visual 
stimuli, seen in recurrent bursts of spikes, correlated 
with the local field potential, both showing marked 
oscillations in the gamma band, around 30-70 Hz. 
These oscillations seem to be the support for the 
synchronization process, as has been shown explicitly 
in the cat’s visual cortex by means of multi-unit record- 
ings in distant sites8qE. 

In all cases studied, these oscillatory episodes are 
far from stationary, as they have a limited duration of a 
few hundred milliseconds. Non-stationary episodes 
have been revealed by a moving window analysis over a 
single response epoch in awake monkeys and 
pigeons’9*26 and in the lighly anesthetized cat’4*‘6. The 
oscillations also contain a substantial amount of jitter, 
with frequencies distributed over a broad spectrum. In 
view of these results, an important element missing in 
this field of study is a quantitative analysis of the 
dynamics of this transient characteristic of the signals 
associated with the phase-coupling of distributed oscil- 
lators. Theoretical studies proposing neural models 
capable of engendering synchronization through oscil- 

Correspondence: F.J. Varela, Institute of Neuroscience, 9 Quai St. Bernard, 75005 Paris, France. 



176 

latoty behavior, have assumed that neuronal synchro- 
nization is a resonance-type process. reducing a largely 
incoherent background activity into a limited cycle with 
a narrow spectrum in the gamma range (e.g. see ref. 
18). However, this is unlikely to be the case given the 
complexity of the physiological and anatomical consti- 
tution of the neuronal populations involved. Experi- 
mentally, the oscillations are non-stationary and broadly 
distributed, as mentioned before*‘*‘“. 

The purpose of this paper is to report on some 
meastires of the dynamical behavior of the local field 
potential recorded from the avian optic tectum in 
awake pigeons, as a first step to address the issues 
raised above. Our analysis has been performed on 
sliding windows over single sweeps of the local field 
potential (LFP), that is, the electrical activity of a local 
group of neurons recorded from a microelectrode, and 
fi!tered between I- 100 Hz, including background activ- 
ity and responses to a moving bar. The techniques that 
have been applied to oscillatory signals so far have 
been essentially based on classical estimates of spectra 
and autocorrelation methods2h. These procedures re- 
main important but do not do full justice to the dynam- 
ics of the data. Applications of non-linear dynamics” to 
brain signals are likely to be useful for understanding 
complex physiological phenomena (for a collection of 
representative papers see refs. 3 and 4). More specifi- 
cally, assuming that some set of measured brain activity 
can be modeled by a dynamical system on a n-dimen- 
sional manifold M, the problem is that of reconstruct- 
ing the trajectory of the system in its phase space 
without knowing the state variables. The only available 
information about the dynamics is from measurements 
given by a uni-dimensional time series. In our case, the 
time series is the LFP. 

In the theoretical case of infinite and non-noisy time 
series, it has been demonstrated”” that M can be 
embedded in RLn+‘. In the practical, non-ideal case, 
the following problems i,.ust be addressed: (1) what is 

the minimum number of variables n represented by 
the dimension of the system’s attractor; (2) what is the 
nature of the system’s state: stable, periodic, chaotic or 
random, during different phases of the resting activity 
or visual response. To answer these questions, two 
numerical estimates are useful in order to quantify 
some aspects of the dynamic structure and the evolu- 
tion of the system trajectories: (1) the correlation di- 
mension which is a static index representing the den- 
sity of points in the state space, and which is related to 
the number of degrees of freedom of the system; (2) 
the local non-linear forecasting32 which characterizes 
the divergence of the neighboring trajectories and is 
related to the largest Liapunov exponent of the system. 

Using these methods, we show here that, perhaps 
contrary to intuition, the complexity of the signal in- 
creases during the oscillatory periods. 

MATERIALS AND METHODS 

Electrophysiologicai recordings 

The full details for the collection of the data reported here has 
been described elsewhereZ6. In brief, a head bolt and recording 
chamber were first surgically implanted onto the skull of adult 
pigeons under anesthesia to provide free access to the optic tectum. 
Recording sessions were performed with the awake animal having its 
head fured and its gaze directed to a tangent screen. The visual 
stimuli consisted in a projected light bar swept onto the receptive 
field. Single glass-coated tungsten electrodes CO.5 I.0 MR 
impedance) were used to record tectal units. The single trials had a 
duration of 2 s. and included responses to the forward and backward 
movement of the stimulus. 

Data collected from the tectum were amplified 1ooO~. and a 
local field potential obtained by digitally filtering at l-100 Hz. The 
LFP was recorded with 5 kHz sampling rate by means of a 12 bit 
converter. In addition, multi-unit activity was recorded after filtering 
the compound signal at OS-3 kHz, and counting the spike events by 
an amplitude threshold trigger. The oscillatory behavior of the LFP 
was estimated by autocorrelation methods: the autocorrelation func- 
tion of the LFP was computed in 200 ms windows moved over single 
sweeps in steps of LOO ms. A Gabor function was fitted to the 
autocorrelograms and their parameters used to estimate the degree 
of significance of the oscillatory activity, following closely the criteria 
proposed by Engel et al.’ for the cat. Basically an oscillation was 
considered significant if the decay of the Gabor function over its 
period (T/T) was greater than 1.0. 

Numerical analysis 

Stare space reconstruction 
In general, there is no unique way to construct a multi-dimen- 

sional phase space from experimental data. Instead, one uses the 
embedding theorems of Whitney’” and Take&” to build up the 
phase space matrix of the attractor from a time series X(ti) = (X(ti), 
X(r, + e). X0, +2ej, . . . X(ri +(I!! - I)@)}, topologically equivalent 
to the original set of variables and obtained by shifting the time 
series by a fixed time lag 0 equal to the first minimum of the mutual 
information, which is a convenient tool to detect moments of mini- 
mum predictability in a time series’. Next a matrix is constructed 
from the components of the vectors X(q). and a singular value 
decomposition (SVD) is performed’, which is a standard noise 
reduction technique that is related to principal component analysis, 
changing the coordinate system io provide an optimal representation 
of the trajectory of the system. If the eigenvalues are less than a 
threshold value (lo-‘) the axis is discarded, one can thus work in a 
smaller dimensional space than the original one (see Methods in ref. 
28). In practice, time series are neither infinite nor noise-free, and 
cause this method to yield results that are highly dependent on the 
size of the data window used for analysis. None of the methods used 
so far to determine the value of the window size give an optimal 
estimate2’; our choice here was guided by empirical constraints of 
the experimental analysis (see below). 

Correlation dimension 
The evaluation of dimension (or correlation exponent, D,) is 

performed by the tkissberger-Proccacia algorithm’2*‘3. It should be 
noted that this estimate does not measure the topological dimension 
of the phase space in which the trajectories of the attractors evolve. 
Rather, it quantifies how much portion of this phase space is 
occupied by the attractor. In general this correlation exponent is a 
fractal number (non-integer). The technical difficulties that are en- 
countered using this algorithm with sets of noisy data should not be 
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Fig. 1. Data from a multi-unit recording from the pigeon optic 
tectum (recording site D. trial 1). displaying the local field potential 
(LFP), and the corresponding bursts of spikes (MUA). The signifi- 
cant oscillatory epochs (see Materials and Methods) are indicated by 
a square, in 200 ms windows, together with the steepness of the 
fitted Gabor function (r/T), a measure of the presence of an 
oscillation. Below, the correlation dimension D, (DIM) and the 
non-linear forecasting (PRE) of the reponse computed in succesive 

2C0 ms windows. 

underes!imated. It is possible to impose conditions on the calculation 
that reduce the possibility of spurious estimates, but noisy experi- 
mental data can fail to satisfy these criteria”. To test the algorithm, 
we obtained the expected values for the Dz of the Riissler and 
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Fig. 2. Convergence plateaus for the estimation of the embedding 
dimension. Data for recording site D, trial 1. 

in 
Lorenr attractors, and of standard periodic functions (one, two, and 
three sine waves related with irrational ratios in their frequencies 
and of the same amplitude). 

Another technical point of significance here is that the choice of 
the time-window for dynamical am&ii is more important than the 
number of vectors selected. Small size time-win- should be 
preferred to non-stationary dynamical systems. In our study in the 
Pigeon. we used a 200 ms time-window since it corresponded to the 
average duration of the oscillatory phenomena under study%. ~c- 
cordingly. we have used the same time-window for our c&tdatiom 
here; increasing the window size to 300 ms of more ordy feads to a 
smoothing of the results. For small data sets 10% of the total of 
variance is due to the use of small numbers of vectors (less than 400) 
while 90% comes from variations due to window size used”. How- 
ever, the number of vectors used is also an important conside~&~n, 
since a large number of vectors can lead to an underestimation of the 
complexity measure. We have used a modified version of the Grass- 
berger-Proccacia (see below) using loo0 vectors as a good compro- 
mise for avoiding underestimation of 4. In practice, the maximum 
value f D, max) is related to the number N of time series as follows: 
D,maxs2 log N “. Since in our study N = loo0, we should not 
retain dimensions greater than 6. 

Our electmphysiological study of LFP signals requires a high 
sampling rate (to preserve the spike data) yielding loo0 vectors for 
the calculation in each 200 ms time-window chosen. For these 
conditions, we have modified the Grassberger-Pmcaccia algorithm 
as follows: the pair Xi,Xj was excluded from computation if Ii-j J > 
B. where B is the tirst minimum of mutual information. Besides, if 
the length of the plateau or of the scaling region was less than 12 
points the dimension estimate was rejected. The dimension of D, as 
a function of embedding dimension must be stable and determine a 
good saturation which is considered as a necessary condition. The 
estimate of the (saturated) correlation dimension was calculated for 
each of the 200 ms data windows WCKl time shifted vectors) along 
the 2 s trials on a maxinun of 16 embedding dimensions. The 
required CPU time on a DEC MicroVax 3100 computer was about 
12 h for each recording site analyzed. 

Non-linear local forecasting 
The basic idea that deterministic laws govern a system even if it is 

non-linear or even chaotic, makes it possible that the future may be 
predicted for short time periods from the past behavior. We have 
computed an index of the evolution of the neighboring trajectories 
using the Sugihara and May” method, which consists of computing 
the linear correlation between the observed trajectory and a prc- 
dieted one. In other words, this method uses a local linear estimate 
in order to produce a global non-linear predictor. The prediction is 
made using the first half of the signal (after SVD in OUT case) as a 

learning set of the evolution of its neighborhoods in the signal’s 
phase spa-. The space is divided into subspaces by the median on 
each axis (k-tree method) to speed up the procedure. The index thus 
obtained gives a system’s ‘signature’ for a short-time extrapolation 

TABLE 1 

Correlation dimension 

Recording Trial Initial Stimu- Afrer Stimu- Affer 
site number state lus I stimu- lus 2 stimu- 

lus I lus2 

C 1 2.40 2.94 0.92 3.62 2.39 

C 9 2.23 3.13 1.85 4.22 1.98 

D 1 1.30 2.42 1.42 2.96 1.76 

D 2 3.60 2.42 1.01 2.92 1.80 
D 3 2.50 2.83 1.21 3.05 1.55 
B ?. 1.95 4.13 2.00 3.14 2.81 
A ;. 3.66 4.49 4.04 3.35 2.41 
E 8 3.08 5.03 3.38 5.04 1.85 

Mean 2.59 3.42 1.98 3.58 2.08 

S.E. a.28 0.35 0.44 0.26 0.15 
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1ABLE II TABLE 111 

Rudicrabiliry index Aremgc T / T 

Recor&g Tkial Initial Stimu- Afier Srimu- After 

site number state Ius I slimu- lus 2 SlimlI- 

Ills I lus2 

C I 113 79.8 85.3 77.8 76.3 

C 9 88.5 70 107.6 62.3 62.8 

D I 83.4 56.8 64.8 84.4 80 
D 2 90.3 57.4 91.8 63 109.4 

D 3 83.7 58.3 60.2 58.8 114.7 

B 2 79.5 89.8 17.9 82.3 65.5 
A 2 110.5 109 112.2 75.8 87 
E 8 t7.7 16.7 111 99.8 86.3 

Mean 92.1 74.72 88.85 75.52 87.75 
S.E. 4.47 6.47 7.23 4.87 6.00 

Mean 
S.E. 

Initiale 
stale 

0.34 
0.03 

(10 prediction time points). The sifutature of a chaotic process is that 
the correlation decreases as the prediction time increases, while in 
random and periodic processes there is a constant and time-indepen- 
dent correlation. For periodic systems the magnitude of this correla- 
tion coefficient is related to the signal/noise ratio. and is equal to 1 
for a pure sine wave, while for a random signal the constant is near 
0. To characterize the signature along the 10 prediction time points 
selected. we have computed the linear slope of the curve joining 
these values. in order to study its evolution along the entire 2 s of the 
raw data. Accordinply, a decrease in value of this parameter indi- 
cates the emergence of an oscillatory period. 

RESULTS 

Eight LFP signals (single trials) from 5 different 
recording sites (e.g. 19 windows analyzed for each trial, 
making a total 152 time series) have been studied with 
the methods described above and compared with the 
standard analysis (spectral power and autocorrelation) 
reported previously . 2b An example of data and analysis 
is shown in Fig. 1 displaying a 2 s raster of spike 
responses (MUA) and the corresponding LFP from a 
multi-unit recording (from a single electrode) in the 
pigeon optic tectum. The 200 ms windows during which 
there was a significant oscillation of the LFP (see 
Materials and Methods) are indicated by a rectangle of 
the window’s duration, along with the T/T ratio which 
characterizes the steepness of the autocorrelation func- 
tion. It is seen that the forward and backward passage 
of the stimulus entrains a burst of spikes, an increase 
in the oscillatory appearance of the LFP, as well as the 
appearance of significantly oscillatory windows accom- 
panied by an increase of the T/T ratio. 

the Gcrrelation dimension (labelled as DIM) follows a 
pa_$!ern of decrease and increase in successive win- 
d’&ys, specially in the later part of the sweep. For 
instance, the average value corresponding to the time 
beh&en forward and backward stimuli is 1.42, increas- 
ing to 2.96 for the backward stimulation. These are 
reliable numerical estimates since they were obtained 
from the curves for increasing embedding dimensions 
displaying important plateaus for scaling regions), as 
illustrated in Fig. 2. That the pattern just discussed for 
the data of Fig. 1 is a representative one can be seen 
by taking averages over all the different recording sites 
and trials studied (Table I). On the average there is a 
significant increase when the values during stimula- 
tions are compared with those during background ac- 
tivity (i.e. no stimulus present) (Manova, F,,, = 46.52, 
P = 0.0002). Thus the oscillatory periods are character- 
ized by a more than one additional dimension of com- 
plexity than the inter-stimulus segments. 

We now consider how this standard analysis com- 
pares with the two dynamical measures studied here. 
These are indicated in the lower part of Fig. 1 in the 
same time scale, for ease of comparison. The value of 

The index for local forecasting appears to follow the 
inverse pattern than that of correlation dimension. For 
example, in Fig. 1 the prediction index displays the 
signature of a rather chaotic activity (with an average 
of 83.4 for the first 300 ms), becoming quasi-periodic 
during the forward movement between 400-700 ms 
(56.8 on the average). A similar sequence of increase 
and decrease is seen in the backward movement of the 
stimulus. Thus the predictability index indicates the 
emergence of a pseudo-periodic activity during oscilla- 
tory periods, but one which is far from a pure fre- 
quency which should display a null slope. This impres- 
sion is confirmed by calculating the same averages as 
those obtained for the correlation dimensions (Table 
II). The differences in this case also reach significant 
levels when the periods with visual stimulation vs. 
background activity are compared (Manova, F,,, = 9.32, 
P = 0.018). Notice that there is an apparent shift of 
about 100 ms in the stimuli-related changes of both 
dynamical measures just discussed. This as an epiphe- 
nomenon due to the fact that for computing the pre- 

Slimu- 
lus 1 

0.77 
0.12 

After 
slimu- 
lus 1 

0.49 
0.05 

Sfimu- 
IL&r2 

0.76 
0.12 

After 
siimu- 
lus2 

0.50 
0.006 

Fig. 3. Trajectories from the first two and most significant axes (see Materials and Methods) of the trajectories from retarding site C, trial 1 in 
succesive time-windows. The underlined times indicates epochs where the visual stimulus was present. 
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dictibility index we consider only the first half ( 100 ms) 
of the window of analysis so as to calculate the trajec- 

tories. 
It is interesting to consider the relation between the 

presence of an oscillatory period and the two indices 
just described. As shown in Table III, the value of 
t/T. which is a quantitative measure of the presence 
of a strong oscillation within the 200 ms window, 
increases significantly (Manova, F,,, = 12.43, P = 
0.0097) during the periods of visual stimulation. How- 
ever, this clear correspondence is less apparent if one 
follows the individual time-windows for each recording 
site. More specifically, we found that only for half of 
the recording sites there was a postive correlation 
(Spearman-Rank correlation value of less than 0.39, 
II = 18 time-windows per recording site) between T/T 
and D2, or a negative correlation between r/T and 
the prediction index PRE. Thus the ocurrence of oscil- 
lations is not always in a precise temporal correspon- 
dence with the indicators for complexity used here. 

A plot of the trajectories along the two main inertial 
axes (i.e. the main components of the SVD; see Mate- 
rials and Methods) of the signal permits a more vivid 
appreciation of the system’s dynamics as shown in Fig. 
3. In the initial windows, the activity is characterized by 
a complex trajectory which is nevertheless distinctly 
different from a random signal, and is better described 
as a chaotic state. This period is followed by a mote 
rhythmic signal, as can be seen in the mixture of at 
least two circular trajectories. During the intertrial 
interval, the signal is simplified into what looks like a 
low frequency limit cycle, which is followed once again 
by a pseudo-rhythmic activity. During the backward 
stimulus, the mixure of two circular trajectories reap- 
pears; the final windows fall once again into a simpler 
pattern. Thus, we can distinguish in succesive epochs 
Of analysis at least three different kinds of trajectories. 
If one compares these images with those from a sinu- 
soidal signal with random modification of amplitude or 
phase, the trajectories obtained bear a resemblance to 
the patterns just described, suggesting that the 
pseudo-periodic@ of the electrical signals could be 
produced by a combination of oscillatory activities 
which have a dispersion or jitter in their phase and 
amplitude. 

DISCUSSION 

It is deary premature to draw extensive conclusions 
from this first study, but we wish to underline certain 
suggestive possibilities for further examination. 

Our results confirm the notion that a dynamical 
analysis of brain events complements and extends wha: 

can be concluded from more classical methods. In fact, 
those methods permit one to draw only limited conclu- 
sions about the transient and broad spectra quality of 
the signals analyzed. In contrast, a window-by-window 
measurement of the correlation dimension and non- 
linear forecasting sharply puts into evidence that, on 
the average, the oscillatory periods correspond to an 
increase in signal complexity. The interplay of these 
three measures over individual time-windows is far less 
straightforward, and needs to be studied further. In 
:_articular, it should be kept in mind that the use of 
T/T to detect oscillations demands that the oscillatory 
period be not only of large amplitude but also of 
regular frequency. This may contribute to explain the 
relative temporal disjunction between Dzr prediction 
and r/T reported here. From a more general point of 
view it should be kept in mind that these three indica- 
tors are, in fact, related distinct characteristics of the 
neural signal. 

The increase in complexity can be tentatively inter- 
preted as a recruitment of a population of neurons that 
is larger than that which gives rise to the electrical 
signal in the inter-stimulus periods. This recruitment, 
possibly by phase synchrony amongst neurons, would 
increase the complexity of the brain signal being 
recorded locally and thus the degrees of freedom of 
the underlying system, as indicated by D,. It is thus 
possible that the difference between background and 
the transient synchronization during visual stimulation 
amounts to the difference between a localized and 
relatively weak coupling, in contrast to a more exten- 
sively distributed and tighter coupling of the neurons 
involved. In a preliminary study of oscillations in the 
cat’s visual cortex, Pawelzik” reaches comparable con- 
clusions. The mathematical studtes of Mathews et aLz2 
would also support this neurophysiological interpreta- 
tion since it shows that in a large population of coupled 
oscillators with a broad frequency range, synchroniza- 
tion can cover an important segment of phase space, 
and that between disorganization and phase-locking 
there are transitional regions characterized by unstable 
chaotic regimes. 

The present results and the above interpretation 
seem to go somewhat counter to the earlier suggestion 
by Freeman”” that during an oscillatory phase the 
attractor in the olfactory bulb was closer to a limit 
cycle, and that the system bifurcates from a complex 
background attractor to a simpler limit cycle during 
discrimination of odors. However, Skinner et aL3’ re- 
port that the correlation dimensions of their signals 
increased by about 0.8 during the learning phase for 
the odors, while it decreased after the odors had be- 
came familiar. The reasons for the differences between 
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our results and those of Freeman might have two 
sources (excluding technical differences derived from 
electrode size). First, the olfactory system is an excep- 
tionally regular neural tissue, and might follow differ- 
ent dynamics (given its ancient phylogentic origins), 
than those of the more recent structures (such as 
tectum and neocortex) which involve more intricate 
assemblies underlying a cognitive task*. Second, per- 
haps in our experiments the animals were in a state of 
activation comparable to the learning phase in the 
experiments of Skinner et al.3’. Both these reasons may 
contribute to our results during passive and repetitive 
visual stimulations. Further research is clearly neces- 
sary to address these issues. 
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