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Abstract

The question of the presence and detection of non-linear dynamics and possibly low-dimensional chaos in the brain is
still an open question, with recent results indicating that initial claims for low dimensionality were faulted by incomplete
statistical testing. To make some progress on this question, our approach was to usc stringent data analysis of precisely
controlled and behaviorally significant neuroelectric data. There are strong indications that functional brain activity is
correlated with synchronous local field potentials. We examine here such synchronous episodes in data recorded from the
visua! system of behaving cats and pigeons. Our purpose was to examine under these ideal conditions whether the time
series showed any evidence of non-linearity concommitantly with the arising of synchrony. To test for non-linearity we
have used surrogate sets for non-lincar forecasting, the false nearest strands method, and an examination of deterministic vs
stochastic modeling. Our results indicate that the time series under examination do show evidence for traces of non-linear
dynamics but weakly, since they are not robust under changes of parameters. We conclude that low-dimensional chaos is
unlikely to be found in the brain, and that a robust detection and characterization of higher-dimensional non-linear dynasmics
is beyond the reach of current analytical tools.

1.. Introduction
1.1. Non-linear dynamics and the brain: The question

The main purpose of this paper is to report on a first systematic attempt to statistically prove the preseace
of non-linearities in time series of single-cell neuroelectrical data recorded under carefully controlled and
behaviorally significant conditions. This is a much less ambitious task than proving the presence of low-
dimensional chaotic attraciors in lesser controlled and more macroscopic signals in the brain (such as scalp
EEG recordings). Checking for non-linearities is a modest but necessary step towards a deeper understanding
of the dynamics. Should the detection of non-linearities in this test case prove to be impossible, the search
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for chaos in other conditions of brain studies would be seriously put into question. As detailed in this paper,
non-linearities in our signals appear to be present, but rather weakly.

In fact, the study of brain signals with the methods of non-linear dynamical systems theory has gained
much attention during the last decade [3]. Most effort has been put in estimating dimensions of putative
low-dimensional chaotic attractors in scalp EEG recordings following the Grassberger-Procaccia method [ 10]
or variants thereof. Such early approaches are known today to be poor means to identify low-dimensionality,
and notoriously unreliable since these algorithms may erroneously claim low-dimensionality where the signal is
actually linearly correlated (colored) noise [30], especially when applied to short timie series of non-stationary
systems. Most of the results obtained with dimension methods have to be reviewed with great care. Recent
results bear out this conclusion in EEG [4541,32].

In addition to problems stemming from this type of signal analysis, the use of EEG scalp recordings,
which are large spatial averages of neuronal masses filtered by the skull and the scalp, recorded either free-
running or during complex cognitive tasks {such as counting or semantic discrimination), preclude very clear
interpretations of a quantitative analysis. It is hard to imagine that the brain enters into a very homogeneous,
stationary low-dimensional “counting-numbers” dynamics. Tasks of this kind involve multiple-distributed and
temporally unstable mechanisms: changes in dimensions in terms of overall cognitive processes of the brain is
bound 10 be an impossible task.

In order to get more telling results, we have followed here a more simple and precise strategy. Firstly, we
have selected our time series from very local neural responses. More precisely, we have studied recordings from
two micro-electrodes placed in brain areas involved in the early stages of visual pathways (the optical tectum
of pizeons and the thalamus of cats). The efectrodes were such that they recorded from a few neighboring
reurons, as seen in their local summed electrical field or local field potential (LFP). Furiher, the animals were
recorded while fully awake and subject to visual stimulations whick are perfectly well controlled.

Second, we are interested in the data thai display transiently oscillatory behavior, leading to a ccherent or
synchronous activity among muitiple neurons. It has been argued that these meural synchronies are a good
correlate of cognitive processes since they permit an ensemble of neurons to be coactivated to produce a
behavioral meaningful action (see e.g. [36]) Our study is focused on those periods of neural activity where
synchronies have been observed during a behavioral visual discrimination [22,20]. We can be maximally
assured that our time series do reflect locally a dynamics of biological relevance.

Phase synchronization of orain signals can be understood as a complex, emerging phenomenon between
distant neuronal ensembles. We expect therefore to find traces of non-linear dynamics in association with the
synchronization process which our data sets follows very precisely. Of course, transition states in networks
of covpled non-linear oscillators are well known in some model cases {38,15], and this constitutes a further
justification for the search of traces of non-linearities by statistical methods based on dynamical systems
theory. Oniy through a multi-approach testing can we be assured that such non-linearities are present in the
neuroelectric data. More specifically, we have applied three methods to test for non-linearity: the construction of
phase-shuffled surrogate data and subsequent comparison of their forecastability by a simple non-linear model,
the method of “false nearest strands” and the “deterministic-versus-stochastic modeling” procedure.

This paper is structured as follows: for the remainder of this section we clarify our overall setting and
notation; in Section Z we detail the three methods employed in this study. Section 3 presents our findings,
followed by Section 4 where we draw our tentative conclusions and suggestions for further improvement in the
study of non-linear properties of brain data.
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1.2. Dynamics and determinism: Formal setting

As is well known, non-linear models may be very simple and still account for a large part of very complex
behaviors. Unfortunately, however, in the first years of enthusiasm researchers often forgot that while some
low-dimensional models may behave in a complex unpredictable fashion, there is nothing indicating that afl
random looking behavior is due to low-dimensional chaotic systems. If one claims on philosophical grounds
that all events are deterministic, as long as the systems ruling these deterministic events are of extremely high
dimension, the claim does not help in any way the analysis of data from such systems. Such systems wiil
appear indistinguishable from random noise, and this is why for decades statistical methods have worked out
well and are still valid approaches to these kinds of observations.

The novelty opened by non-linear dynamical methods lay in the middle ground between these extremely
high-dimensional systems and the simplicity of low-dimensional (deterministic) linear systems. Se, the only
systems where the newer findings may find application are still systems of relatively low dimension. While
chaos (i.e., random looking behavior from deterministic systems) seems to be a universal phenomenon in
nature, low-dimensional chaos may be much less frequent. How “low” the dimension must be in order to see
the determinism depends on the system itself (e.g., its Lyapunov exponents) and the observation conditions.
From scalar time series of moderate length, the dimension should be sensibly less than ten, to distinguish the
data from purely random ones. In the following, when we write “chaos”, we implicitly meaz Iow-dimensional
dynamics. Then there are “mixed” systems, which, under lucky circumstances, may be separated into a dominant
low-dimcnsional part and high-dimensional contributions. The issue of concern to us can now be stated thus:
within the panorama just sketched, to which category do locally recorded neuroelectrical responses from a
behaving animal belong?

To introduce our notation, we follow usage by assuming when analyzing data recorded from an unknown
dynamical system, such as the brain, that the system is defined in terms of (unknown} ordinary differential
equations,

D - P +a0). (n
with u € R" and F : R” — R" a “well behaved” function. In the absence of n(¢), that is, 9(¢) =0, Eg. (1)
implicitly defines a deterministic flow in the state space R"; a solution of Eq. (1) #(r) for some time interval
fp ...t describes a trajectory in the state space (or phase space) R”.

The forces 2)(¢) reflect our incomplete knowledge of the state of the whole system. In simulation studies 5(r)
is usually considered as noise and modeled by an appropriate stochastic process. In the parlance of Tong [46]
F(u(1)) is called the (deterministic) skeleton of the dynamics which is clothed by the noise. Since this term
enters the dynamics of the system, it is referred to as dynamical roise. We do not wait to enter the etemal
debate whether there exists true randomness or not: %(¢) may result from perfectly deterministic processes,
from which, however, we have no information in our data. Given the multitude of possible exiernal influences,
we expect these processes to be of extremely high dimension, so that they effectively appear as random.

We take now a series of k simultaneous measurements {in our case electrical recordings) of our system (1)
at discrete time steps At and obtain a time series of N points,

{X,E,'.m} 4 G Rk 0 S f' < N. (2)

in observation space R¥, with 1/A: the sampling frequency. This observation process may be modeled mathe-
matically by

=h(u(t)) +6,, (3
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with some (unknown) observation function h : R" — R and observational noise 8,. Again, we want to stress
the point that what we call “observational noise™ may well stem from other deterministic processes, from which
we have no further knowledge, and which are of very high dimension. In this paper we consider only scalar
time series, that is. k = 1 and we write the series as {x,}. As we shall see, multi-site recordings will most
certainly be essential for future studies of brain dynamics.

1.3. Reconstruction of the system’s state space

Since we don't have access to the dynamical system itself but only to a time series of obscrvations, we
have to reconstruct a suitable state space for the unknown system from these observations in order to find any
characteristics of the underlying dynamics. This is possible by the method of time delays. Saver et al. [35]
extending on previous work of Whitney [49], Packard et al. {25] and Takens [39] proved that in the absence of
noise, unlimited number of data points and fairly generic conditions on the system equations F and observation
function k, the delay vectors x(t) € R?, constructed according to the rule

x(t) = {x(1), x(t = 7)., x(1 - 27),...x(t — {d - 1)7)}, 4)

form an embedding of the dynamical system. The condition is that the embedding dimension d be greater
than two times the box-counting dimension of the attractor A of the dynamical system. Then, the map from
the attractor A to time-lag space R? defined by this prescription is one-to-one on A and an immiersion on
each compact subset C of a smooth manifold contained in A. If the reconstruction is an embedding, the most
important properties of the original system are preserved in the reconstructed space and characterizations of
the reconstructed system apply equally well to the original one. It should be noted that the use of time delay
vectors is by no means new and goes back at least to the work of Yule [50] (see [6]). The truly new insights
brought by dynamical systems theory is the existence of geometrical invariants which are preserved under the
reconstruction.

Other approaches to reconstruct a system’s state space are possible and have been proposed (see e.g. [4.9]).
These methods start from the time-delay reconstruction and try to compress the information given into a new
space of smaller dimension, and subsequent calculations are less time consuming. In this paper, we have not
tried to optimize over the direct time-delay approach.

There is a vast literature about how to choosc the “best” embedding parameters delay time 7 and embedding
dimension d for the time lag method (see e.g. {9,18,33] and references therein). While the general theorems
do not help in the choice of these parameters, the concrete values are of great importance for practical state
space reconstruction, that is, réconstruction from a limited set of noisy observations. Again, we did not seek
to optimize our choice but tried systematically over a wide range of “reasonable” parameter values according
to the intrinsic time scales of our data. We do this also in order to see the robustness of the non-linearity:
non-linearities stemming from low-dimensional dynamics should be insensitive to reconstruction parameters
in a wide range. The discrimination statistics should improve for higher embedding dimensions. Finally, the
method of false nearest strands we use to test for non-linearity, has originally been designed for the purpose of
estimating these embedding parameters.

The presence of noise in the dynamical system or in the observations seriously complicates the situation.
Casdagli et al. [6] worked on the problem of infermation lost due to the projection to a low-dimensional
observation space by the measurement function. In this view, each measurement is considered as carrying
information about the localization of the state #(r) in the original state space. Uncertainties or noise in the
cobservations allow only for approximative localization of the original state. Casdagli et al. show that this
localization may be impossible from scalar measurements, even for moderate values of dimension, Lyapunov
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exponent and observation noise. Consequently, any trace of determinism is lost and the observation of the
chaotic dynamics becomes a truly random process. The only way to “see” more of the determinism is to gather
more and better information from the system. This includes as well knowledge on the system other than from
its observation, possibly from some explicit model.

1.4. The search for non-linearities

Characterizing a dynamical system on the basis of an observed time series consists of two fundamentaf steps:
the reconstruction of a suitable state space, and the estimation of some characteristic quantities of the dynamics,
estimated on the trajectory in reconstructed space. Since we do not have any idea of the system’s dynamical
equations and the analytical form of the observation function we have no direct way to check whether our
embedding procedure succeeded and that we actually have a relevant representation of the dynamics. What
usually has been done in this case is to calculate some system invariant (such as cotrelation dimension or
Lyapunov exponents) as a function of increasing embedding dimension. Once a sufficient embedding dimension
reached, the estimated invariant should saturate at the coirect value. High-dimensional systems should never
show saturation, independent of embedding dimension.

This approach, however, has proven to be of limited reliability. Procedures like the Grassberger-Procaccia
algorithm [10] involve subjective judgments, for example, on the presence of plateaus which make its applica-
tion difficult. Even if emrors like those reported by Osborne and Provenzale [23] can be avoided when carefully
applying the method [40,11], calculations of some invariant alone are no more accepted as reliable indicators
of low-dimensional dynamics.

Rather, the idea that has been explored recently is to fest the data first for the presence of non-linearities:
one tries to reject the null hypothesis that the signals recorded are linearly correlated Gaussian noise. From the
viewpoint that the time series recorded contains information about the dynamical system under investigation,
testing for non-linearities can be regarded as a test whether the time series recorded contains information
beyond the classical second order statistics, that is, auto-correlation or power spectrum. Once the presencs of 3
non-linearity is clearly proven, one may attempt to characterize it.

We have mentioned above how information about the dyramical system can get lost by the projection to
a low-dimensional observation space. Inferring from reconstructed trajectories introduce additional sources of
estimation errors. due to insufficient length of the time series, or non-stationarities. In line with the Central
Limit behavior, this information lost due to low-dimensional projections, uncertainties and estimation errors,
will eventually add up in a way such that the time series appears to be Gaussian noise (perhaps transformed
by a static non-linearity in the measurement function).

Technically speaking, we try to reject the hypothesis that linear models of the form

P ]
Xpel = Z: aixe—; + Zﬁiﬂ-i £5)
=0 =0

(linear auto-regressive, moving average (ARMA) models), with real parameters a;, 8; and Gaussian innovations
€; is all we are able t infer from the given data. These time series are completely determined by their spectra.
or, because of the Wiener—Kinchin theorem. by iheir avto-covariance. No additional information is specified,
for example, on the relationships between the phases of different independent frequencies. Non-linearities, by
contrast, necessarily involve specific relations among the phases of different frequencies. This is why filtering
out some frequency band to ook for chaos in brain recerdings (e.g. the aipha band 8-12 Hz [37]) can mever
succeed since by the filtering we eliminate any information which might allow us to detect the non-linearity.
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There are many approaches 10 fest for the presence of non-linearities in time series. Classical statistical
methods first “bleach™ the data by fitting linear auto-regressive models (AR), eliminating thus all linear
comrelations. Then, one tries to find some additional structure in the residuals of the linear fit, by using models
with higher order terms [ 16,17,34,27.47]. These methods are very well suited for data whose linear part can be
modeled by low-order AR models and test the hypothesis of linearity against rather specific alternative non-linear
models, like higher order Volterra expansions [ 17], smooth threshold auto-regressive models [47,16], or smooth
exponential threshold auto-regressive models [27]. The assumptions of such alternative hypotheses demands
supplementary knowledge about the putative processes which have created the data, a knowledge which is not
available 10 us in the case of brain time series. Also, these tests are very sensitive to incomplete elimination
of the linearities, leading to false claims for non-linearity where some linear relationship is still present in the
residuals. Thus, highly auto-correlated data like ours are difficult to treat with these algorithms. An exception
is provided by Hinich, who proposed a test for non-linearity based on highcr order spectral components [12],
in particular the estimation of the bispectrum, therefore searching for inter-frequency relationships which are
typical for non-linearities.

Consequently, we propose to concentrate kere on another series of methods inspired by non-linear dynamical
sysiems. The objective is the detection of traces of some dynamical non-linear system in the recorded data. The
resuits in this paper have been obtained with three methods: (1) First, we compare phase-randomized surrogate
data with the original time series by means of a simple non-linear forecasting procedure. (2) Second we apply
the recent method of “false nearest strands™ which probes into some geometrical propertics ot the reconstructed
state space. {3) Third, we use a method which tries to evaluate the degree of determinism, as measured by
out-of-sample ferecasts of a continuum of model classes. We preferred these tests since we hoped to gain
further insight into the nature of the non-linearities. In particular, data from low-dimensional chaotic systems
should show a characteristic behavior in function of the embedding parameters. The more classical statistical
approaches mentioned above do not provide this distinction. The following section explains these methods in
greater detail.

2. Methods
2.1. Methods for time series analysis

2.1.1. The method of surrogate dara

The method of surrogate data is an application of so-called statistical bootstrap methods (for a review see
e.g. [8]). These methods allow the testing of statistics against null hypotheses whose distribution function
cannot be derived analytically. Instead, the distribution of the statistic of interest under some Hjp is estimated by
computer simulations and the test is done against this empirical distribution. The main difficulty is the procedure
to create convenient realizations under Hy, which is necessary for reliable estimation of the statistics’ distribution.
In our case, we want to test against a Hp of linearly correlated noise. Therefore we need an algorithm which
creates many realizations with the same linear properties as our original data but otherwise random. Usually this
is done by randomizing the phases in Fourier space. This preserves the frequency spectrum, while destroying
any relationship which might exist among the phases and which would account for non-linearities in the tested
data' . Surrogate creation by this technique was introduced in the field of non-lineer data analysis by Osborne

! Due 10 the central-limit behavior and the Gaussian distribution of the random numbers used ic shuffic the phases, the individual points
of the surrogates time series created as described, have a tendency towards a Gaussian distribution theinselves. This will give false positive
results if the distribution of the original time series had a strongly non-Gaussian distribution. To protect against this case one modifies the
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et al. [24] and made popular by Theiler et al. [42,43]. A parallel implementation has been proposed by Kennel
and Isabelle [14].

In order to discriminate the possibly non-linear time series from its linear surrogates, we need a statistics which
depends crucially on the supposed non-linear properties. Several methods have been proposed [42,43,26,14].
Theiler et al. recommend using several discrimination statistics based on approved methods of non-lincar data
analysis, namely, correlation dimension, non-linear forecasting error and Lyapunov exponents.

The statistics are calculated for the original time series and tested against the distribution estimated from aff
surrogate time series. If the original data can be distinguished from the re-sampled ones with good confidence
we may reject the hypothesis that the data arose from a process described by the linear model and assume
non-linear structures to be present. The significance may be estimated as difference of the original and the
mean surrogate value, normed by the standard deviation of the surrogate values. Let Q denote the statistics,
#r, = (Qun) the mean over Q appiied to all surrogate data, and o, the standard deviation of Qugr. Then
define S by

S= [Qorig — it '
THy

(6

The units of this dimension-less quantity are usually called “sigmas”. If, in addition, the distribution of the statis-
tic is Gaussian, as numerical experiments indicate, a P-value can be calculated by P; = 1/2[1 + erf(S/v2)].

Alternatively the significance can be estimated by the Monte Carlo probability Pyc. This robust empirical
measure of probability is defined as

number of cases (Q < Qorig)
number of cases

Puc = , (M
where “number of cases” includes both surrogates plus the original. Here we are interested in finding Qug
smaller then the statistics for the surrogates, such as non-linear forecasting error or comrelation dimension. We
can reject the null hypothesis at a confidence level of Pyc = 1/( Nurr+1) if Quuer < Qorig for all N surrogates
(see [31]).

Another evaluation of the significance of non-linearity used here, well suited in the case of non-linear
forecasting errors as discrimination statistics, has been proposed by Kennel and Isabelle [14]. They use 2
simple model where the forecasting is done by searching the nearest neighbor in phase space, excluding these
data points which are closer in time than some empirically determined decorrelation time, thus correcting against
gversamoling. Unlike Theiler et al. they don’t compare the means of the prediction erors for the original and
the surrogate data, but the distributions of the forecasting errors themselves by means of the Mann-Whitney
rank sum lest. This parameter-free test calculates from the two sets of forecasting errors a quantity Z which
is normally distributed with zero mean and unit variance under the rull hypothesis that the two samples came
from the same distribution. Since this statistical test supposes the samples to be independent, and the forecasting
errors of successive points of a highly autocorrelated time series are surely not independent, only a subset of the

nuil hypothesis and tests against the stronger aull hypothesis that the data stem from a linear random process, transformed by a static
non-linearity. To create surogates for this swronger null hypothesis, one first re-scales the original data to have a Gaussian amplitede
distribution. That is, one makes a series of Gaussian random numbers with the same length as the original data and sorts them so that both
series have the same rank structure. From this “gaussianized™ time series a surrogate is built as described above. The correct surrogate
finally is obtained by reordering the original data as to have the same rank structure as the phase randomized version of the gaussianized
data. Evidently, this preserves the distribution of the original data points, since the susrogates are nothing but a shuffled variant of them.
The trick is a controlied shuffle which preserves the linear dependencies of the original time series. Alternatively, one may work with the
gaussianized time series itself.
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errors are taken into account. In what follows, the surrogate tests were done with a Mann-Whitney statistics,
following Kennel, on whose implementation ours is based.

As we discuss below, it seems that the FNS method is both more reliable and fess costly in CPU time than
the surrogate method just described. However, in order to provide a clear link with current literature which uses
extensively the surrogate approach, we have used both tests for the set of data from the cat’s LGN, but not for
the pigeon tectumn data. The LGN data was more adapted, since it was less oversampled, and better stationarity
allowed for longer segments of analysis.

2.1.2. The method of false nearest strands

The initial motivation of this method is to find best emhcdding parameters, time-lag 7 and dimension d. It
can, however, easily be extended in a ratural way to provide a fast and reliable test for non-linearity. In order
to test if some embedding makes a deterministic map, one examines the number of self-crossings of trajectories
in the reconstructed state space. If the unknown evolution in the original state space is deterministic and the
embedding is “good”, that is, one-to-one on the attractor, there will be no self-crossings of trajectories in the
reconstructea state space. The method of faise nearest strands {13] improves over a former approach of false
nenrest neighbors | 2] in that i accounts for highly oversampled data and small time delays.

The idea behind false nearest neighbors is to check whether nearest neighbors in the reconstructed state
space are neighbors due to the dynamics (“true nearest neighbors™) or rather due to the projection of the
original state space into a space of inappropriately low dimension (“false nearest neighbors™). Te this end
one looks for nearest neighbors in a d-dimensional reconstruction space and calculates the distance of these
points in a (d + 1)-dimensional space, constructed by adding the d + Ist coordinate. If the distance in the
higher dimensional space is very large, we have found what is called a false neighbor since the two points
are close in d dimensions only due to the too low-dimensional projection. In contrast, zrue neighbors in d-
dimensional space will remain neighbors in (4 + 1)-dimensional space. The ratio of false nearest neighbors
over all pairs of neighbors tested should go to zero when we have found a good embedding. This statistic
based on counts of false nearest neighbors, however, is affected by high temporal correlation in the data due
to oversampling, or embeddings with very short time delays. These consideration has led the authors to count
false nearest strands ratker than faise neighbors individually. A strand pair is made of all pairs of points within
some time interval which are mutually nearest neighbors and direct iterates of one another. Now, instead of
identifying false embeddings by the number of false nearest neighbors, we examine the distance of strand pairs
in different embedding dimensions. There are multiple ways of defining when a strand pair is false. Kennel and
Abarbanel {13] chose to designate a strand pair as false, if the average “extra distance” in (d + 1)-dimensional
space is too large. That is, they compute the mean absolute distance on the d + 1st coordinate for a whole
strand pair. The strand pair is declared false if this adGitional distance is larger than some parameter p of order
unity, times the natural radius of the attractor, Rs. The final statistic is then the ratio of false nearest strand
pairs to the total number of strand pairs.

To summarize briefly (see {13] for details), the false nearest strand procedure is performed in this way:
(1) choose some time lag 7 and embedding dimension 4 and embed the scalar time series with this time delay
in a (d + 1)-dimensional space. This space is rotated and stretched to normalized principal components, so
that the coordinates are now linearly decorrelated. (2) The trajectory in the new, rotated space is projected
down to d dimensions by discarding the d + 1st coordinate. (3) In the d-dimensional space, search the nearest
neighbors io all points, excluding those whose time index is closer than some decorrelation time, usually in the
order of two times the autocorrelation time. {(4) From this list of nearest neighbors estabiish the list of strand
pairs. In function of the d + st coordinate decide for each strand pair if it is a true or false one.
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We have also compared the ratio of false strands with that obtained by randomly shuffling the Iast component.
If the sigral examined stems from a truly low-dimensional dynamics, the first ratio should decrease with higher
embedding dimension (and finally go to zero for noise free data) while the ratio of false strands with randos:
last component should remain at a high level around 50%, indcpendent of the embedding parameters. With
reasonably clean low-dimensional data the difference between original data and shuffled last component should
be visible by eye. This is why the authors did not perform ary supplementary statistical evaluation of the strand
ratios. For our data, the difference cannot be evaluated as easily. Therefore we added in our implementation
the obvious Monte Carlo simulation, performing numerous. shufflings (at almost zero cost) and estimating the
probability of lincarly correlated noise by the statistics based on Gaussian distribution equation (6) and the
empirical Monte Carle probability equation (7} as stated above.

In this article we have favored the FNS method over the surrogate construction for two main reasons. First,
it does not require the time consuming search for nearest reighbors for each surrogate which is done only once
in the FNS method. Secondly, the surrogate construction procedure may introduce spurious artifacts {see for
example [44]).

2.1.3. Deterministic versus stochastic modeling

The “deterministic vs stochastic” (DVS) method [7,5] consists of fitting a family of local linear models to
the data and analyzing their prediction accuracy in function of various parameters which determine the model
class. The procedure evaluates the forecasting performance of models ranging from local linear, that is, globaily
non-linear to global linear ones. Local linear models perform better on chaotic data than global linear ones, data
from linear corvelated noisy devices are better modeled by globally linear models. Data from low-dimensional
noisy chaotic devices will show lowest forecasting emrors with intermediated models.

The system’s state space is reconstructed by the method of time delay embedding to obtain trajectory points
as discussed above. One chooses test vectors x; and fits affine models of the form

xjvr = fT(x)) (8)

to selected vectors out of a training set of N trajectory points preceding the test vector in time. The model is
then used to estimate a T step ahead prediction of the test point by

St = 1(5). @

We select the k nearest neighbors to the test vector in state space as basis of the fitting model. Model
parameters a;, i =0,...,d are determined as to minimize the squared error of models,

d-1
xi(l)+T=Zanxj(l)—nr+ad. I=L,... k. )
=0

Since there are (d+ 1) patameters, the minimal k to solve this equation is k = d + 1. The solution is unique,
if the matrix composed of the x; is non-singular. This is rarely what we want, since we do not expect single
data-points determine the future behavior of the trajectory via a linear model. A reasonable lower limit of & to
have a fit is two times the mathematical minimum, that is k =2(d + 1).

By varying the number of nearest neighbors used to build the model in the range of k=2(d + 1) 0 k= Nf
(that is, the whole fitting set), we sweep the whole model classes from the deterministic extreme (local lineas
models) to the stochastic extreme (global linear models). Notice that for k = Ny the fitted model is nothing
but a linear autoregressive model of order d.
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This procedure of model building is repeated for a large number Ny of test vectors, and the mean absolute
forecasting emror is computed,

Etty= Y i’”l;—‘”’l an
all test vectors T

Plots of these error curves for different embedding dimensions d against the number of nearest neighbors,
k, is called a DVS plet. If models near the deterministic extreme give the most accurate short-term forecasts,
then we have strong evidence for low-dimensional chaotic behavior in the data. This can been seen in Fig. Ia
where a DVS plot for the chaotic Lorenz system is shown. Once the sufficient embedding dimension (3) has
been reached, the forecasting error decreases drastically for local linear models. Global linear (AR) models
produce errors ahout 20 times higher. When we add 25% (RMS) white noise to the same data, we observe
first a general degradation of the forecasting (Fig. 1b). The errors go up from 0.002 for the noise-free data to
0.31 with noise added, taken from the respective best models. The signature of the DVS plot is typical for a
noisy observation of a low-dimensional chaotic system: we need more observations in order to “average out”
the noise, but the local structure in reconstructed state space is still prevalent. Therefore, the best forecasting
is obtained with intermediary model classes. Linearly correlated noise (Fig. 1c) shows a further diminution of
the forecasting precision, and best prediction at globally linear models. The data for this calculation has been
obtained by phase-shuffling the noise-free Lorenz data, used for the two plots before. There is no structure in
the reconstructed state space which could be exploited by the simple local finear models used. White noise
(Fig. 1d) shows the same signature as linearly correlated noise, but the predictability has been lost. The best
forecast is the mean value itself, this is why the AR model of lowest order performs best here.

2.2. Methods for the recording of time series

We have applied the methods described above to local field potentials recorded from micro-electrodes placed
in the lateral geniculate nucleus (LGN lamina A1) of mildly anesthetized cats and in the optic tectum of awake
pigeons. For full details of the methods see [20,21]; we only summarize here some essential points.

In the visual pathways of all vertebrates the retina connects to the brain via the optic nerve which follows
two parallel and major routes: the so-called tecto-fugal and thalamo-fugal pathways. In mammals, the pathway
with the largest number of connections is the latter one, connecting optic nerve axons to the thalamus, at the
lateral geniculate nucleus (LGN). The second pathway goes to the superior colliculus, and both LGN and
colliculus are reciprocally connscied with the visual cortex (see e.g. [52]). In other vertebrates (such as fishes
and birds) the largest pathway goes to the optic tectum (homologous to the colliculus of mammals, belonging
to the tecto-fugal pathway) while the second pathway goes to several disperse points of the thalamic complex
(see e.g. [51]).

In our study we have chosen recordings from the two preferred connections from the retina: LGN in cats and
tectum in pigeons. These structures are thus quite different anatomically, but in both cases there is evidence of
a very active moduiation from retinal stimulation in the receptive fields of the neurons recorded with micro-
electrodes. Tectal cells respond best to moving stimuli (i our case: light-bars), but only briefly; some thalamic
cells, in contrast, may show strong, long lasting responses also to static stimuli.

Further, in both cases an active sensory modulation evokes synchronous activity in pairs of neurons (or small
groups of multi-site responses) which, although separated by significant distance (up to a few millimeters),
they may nevertheless enter into very precise temporal synchrony in their electrical responses while the visual
stimulation is present [20].
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Fig. 1. Examples for DVS plots for embedding dimensions 2 to 5. Horizontal axis: number of nearest neighbors used to build the local fincar
model. Vertical axis: mean absolute forecasting emror. (a) Noise-free Lorenz system. Once a sufficient embedding dimension reached, the
forecasting error drops by a factor of almost 200 fos n-..Jeis in the deterministic extreme. (b) Lorenz data plus 25% (RMS) white noise.
Generally, the forecasting is much worse. the least forecasting emors is obtained for intermediate modef classes. (c) Phase randomized
Lorenz data as example for lincasly correlated noise: least forecasting eror for global lincar models. (d) White Gaussian noise.

By differential filtering, two types of electrical signals can be recorded from micro-clectrodes: spike activity
(single or muiti-unit) and ficld potentials. Spike activity can be detected by high-pass filtering of the data in
the range of 10 KHz, since they correspond to propagated action potentials of brief (1 msec) duration. Local
field potentials (LFP), in contrast, are continucus signals, obtained when filtering up to 100 Hz. Since we
record from micro-electrodes, we record potentials only from a local population. It is not precisely known how
LFPs are composed from the activities of the neurons around the electrode, but it is widely assumed to be 2
spalial average over sub-threshold and spike potentials. A spike-triggered average of the LFP clearly shows a
functional connection between both. Since it is much more convenient to use the continuously sampled LFP
instead of the discrete series of spikes, we have worked here exclusively with LFP as our source of data.

The time series studied here correspond, then, to pairs of neurons in either tectum or LGN where an LFP
tesponse is detected while a light stimulus is presented twice in front of the receptive field. There are two
subsequent periods of response, and each trial is part of a sequence of ten repetitions which are individually
analyzed.
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3. Results
3.1. Neural responses from the thalamus

3.1.1. General conditions for analysis

We have analyzed 5 sets of local field potential recordings from two electrodes in the lateral geniculate
nucleus (LGN lamina Al) of cats (see [21] for details). Each set comprises 10 trials of 10 seconds of
continuous recording with a sampling frequency of 1 kHz. There are two experimental conditions: static Aashes
and moving light bars. For data seis iabeled SA and SB stimulation was produced by means of a static light
bar, flashed over the receptive field. A trial comprises two stimulations of 2 seconds duration each, preceded
and followed by an interstimulus period of 2 seconds. Data sets labeled MA and MB were recorded with
stimulation by a single moving light bar across the receptive field, moving forwards and then backwards in
cach trial. A third data set MM correspond to recordings with stimulations by two moving light bars.

The methods of surrogate data and false nearest strands have been applied to overlapping segments of 2048 ms
and 1000 ms length, respectively. To this end, we applied first a low-pass filter with a cutoff (--3 dB point)
at 140 Hz to remove high-frequency noise. The filtering has been performed in Fourier domain?. Using this
a-causal filtering should introduce only negligible side effects, as has been shown in numerical studies [19].
The search for non-linearities has been performed on overlapping segments, cut out from these filiered time
series. Each segment is then rescaled to have an approximately Gaussian amplitude distribution before the tests
are applied. The time series have low power at frequencies below 5 Hz, so that the signals may be regarded
approximately stationary within the segments chosen.

After filiering, the first zero crossing of the auto-correlation function calculated for each of the segments
falls around 15-20 ms (equals number of points) for each of the segments. There is very little variation of this
characteristic time within the trials. We have chosen therefore the range of embedding time lags as 3 ms to
18 ms in steps of 3 ms. The decorrelation time for the search of nearest neighbors is state space was set constant
to 25 ms. The tested embedding dimensions are 1 to 8 in steps of 1. The two methods applied systematically
over this range of embedding parameters return the respective statistics for each of these combinations. That is,
a N(0,1) distributed value Z in the case of the surrogate method, and directly an a-value in the case of the
FNS method. .

We need to consider the problem of deriving inferences from replicated tests. Given some significance level
of, say, 95%, we expect 5% of false positive results in these tesis. Performing the same test n times evidently
increases the absolute number of positive results, true as well as false, and a single statistic above the level of
significance is therefore less reliable. To get around that problem, Kennel and Isabelle {14] proposed to raise
the significance level accordingly such that the new threshold corresponds 0 anew = a/n.

There is a difficulty with this approach in that we do not perform exactly the same test, but iests with
varied parameters. In principle statistics for data from truly low-dimensional dynamics should be insensitive to
changes in the embedding in a rather wide range of the parameters, so the assumption of “repeating the same
test” is correct. But our data are less conclusive and we proceed therefore as follows: we count the number of
times when the statistic reaches the significance level. We require at least 5% out of ll repetitions in order to
be classified significant. Again, for truly low-dimensional data this should give the same result. But it allows
1o detect trends in the experimental data even when they are not fully significant. In our case, we perform
8 x 6 = 48 tests on each window. A significant non-linearity requires more than or equal ~ 3 positive results.

2 To do so0. we use only 8192 points of the whole time series, starting at 1000 ms.
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Table 1

LGN surrogate statistics: counts of segments with more than 0, 2, 4, § or 6 individual rejections of Hyy at the 95% level (valse Z < ~[.65)
amongst all embedding-sets (48). Total number of segments per data set and clectrode: 70. Last column: total count of rejections (out of
3360). Percentage values in parenthesis, rounded.

#cs>0 #cts>2 #cis>4 #ers>5 #cts>6 52
NULL 63  (90) 32 (46) 9 (13) 4 (6) 1 (1 172 €5
MA-1 66  (94) 46  (66) 24 (39 17 (29) 12 an 2712 (8)
MA-2 66  (94) 2 (60) 15 Qn 7 (10 3 (4) 216 (&)
MB-i 67 (96) 57 (81) 28 (40) v @ 12 an 296 (%)
MB-2 63 (%0 ¥ 49 1} (16) 4 (6) 1 (D 188 (6}
SA-1 68 (97) 58 (8)) 36 (51) 21 (39) 17 (24 368 (i5)
SA-2 61 87 34 (49 0 (149) g8 (D 4 190 (6)
SB-1 66 (94) 35 (50) 15 @n 10 (14) 8 (IYH 220 (M)
$8-2 62 (89) 33 (4D i (i6) 7 (10} 3 @ 18 (5)
MM-i 62 (89) 4 (63) 9 2N 13 (19 1 (16 bZ B Y3
MM-2 63  (90) 40 (57) 13 (9 8 (I 4 (&) 218 (6)

In order to verify our strategy, we performed the same tests on a set of “null-trials”, constructed by phase-
scrambling the data of a “good” set (MA-1) before they enter the surrogate or FNS procedures. By this, we
have an ad.Jitional empirical criterion to compare our results.

3.1.2. Results for the surrogate method

Table 1 reports the overall statistics on identified non-linearities in cverlapping segments of 2048 ms length,
where each trial has been cut into 7 overlapping segirents, giving 70 segments for each set and electrode. For
each experimental sequence of 10 trials, we count the number of segments (out of 70) where the hypothesis
of linearly correlated noise could be rejected at the 95% level, that is, a value of Z < —1.65. We report
on the cases where Hp was rejected for more than 0, 2, 4, 5 and 6 amongst the 48 combinations of different
embeddiug dimensions (1-8) and time lags (3-18 ms in steps of 3 ms). We shall refer to one such combination
of embedding dimension and time-lag as an embedding-set. The scores are listed in columns | to 5. In the fast
column we list the total number of positive embedding-sets (out of 70 x 48 = 3360).

We expect 5% of false positives, that is, 168. Indeed, the null-test retumns a total of 172 rejections (NULL
row, last column), which fits well the theoretical value. Almost all segments for all data sets, true data as well
as scrambled data, contain at least one embedding-set where Hy could be rejected (~90%, first column). At
the theoretical significance level {required number > 2, column 2), we detect a rather high ratio of significant
non-linearities in the original data (more than 50%). Notice, however, that the counts in the case of the null-test
are still very high (46%) and are only slightly different from the true data. The nutl-test actually falls to the
required 5% level for segments to be considered significant with more than 5 counts (column 4 shows 6%; 5%
out of 70 is 3.5 counts). At this level, there is a clear separation between the true data and the null-test, on
the one hand, and between the two electrodes, on the other. Electrode one still counts an enhanced number of
significant segments (20-40%), while electrode two shows sensibly less.

In summary, the data clearly displays segments with significant non-linearities. If they stem from a low-
dimensional chaotic process, however, they should be insensitive to changes in the embedding parameters in a
rather wide range. This is certainly not the case for the present data.

In Fig. 2 (upper row) we plot cumulative counts for individual rejections at Z < —1.65 for the ten trials of
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Fig. 2. (top) LGN surrogate cumulative statistics. Results given only for set SA as representative example of all data sets. Plotied are
counts of rejections at the individual 95% level (Z < ~1.65.) Left: electrode 1, right: electrode 2. The high number of counts in set SA-1
around 1600 ms is Yinked to a highly regular, long lasting oscillation which starts before the stimulation. Stimulation periods are indicated
by the bars near the r-axis.
(bottom) Same data as above with the reduced statistics for the suriogate method. Plotted are counts of scgments, where the Hy of
corelated noise could be rejected more than 3 times (dotted line) and more than 5 times (continuous fine).

data-set SA against time. This is the set which shows the clearest modulation of the occurrence of non-linearities
as a function of time. The graphs for the other sets (not shown) have a tendency to be almost constant at a
level of 30-40 rejections per time slot.

Fig. 2 {bottom row) displays ihe results for the same data set, but this time we show the number of segments
(out of ten) per time slot, wherz 4 could be rejected at the individual 95% level (Z < —1.65) for more than 3
and 5 embedding-sets, respectively. The number of significant non-linearities drops drastically when requesting
more than the 3 counts that are theoretically necessary. In contrast, the tendency for a coincidence between
emergeace of non-linearitics and stimulation is enhanced in this presentation.

3.1.3. Results for false nearest strands

Table 2 reports the cverall statistics on occurrences of non-linearities as detected with the FNS method
applied to overlapping segents of 1000 ms length, with 18 segments cut from each trial making a total of
1800 scgments analyzed. /As in Table 1, the first row reports the results on the null-data set. This test reveals an
empirical value of false pusitives of only 1.3% of the total number of embedding-sets tested (Pyc last column;
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Table 2
LGN FNS statistics: counts of segments with more than 0-4 individual rejections of Hy at the 95% leve!. Valoes are based or the Monte

Carlo probability Pyc (percentage values in parenthesis, rounded). Last two columns: total number of rejections for Monte Carlo P
and Gaussian PG probability. The resultz are of the same order.

#cis>0 #cas>1 ¥cis>2 #eis>3 #cts>4 Puc FPo
NULL 78 (43) 25 (14 8§ (4) 2 I (n H4 68
MA-] 87 (48) 33 8) 10 (6 4 (D) [ 135 H1
MA.2 87  (48) 2318 13 (M 5 3 P () 138 §06
MB-1 77 (43) 25 (14) 7 @ 3O I 116 9%
MB-2 94 (52) 4 (24 18 (10) 4 (2) I «(n 163 139
SA-1 9 (4) 32 (18) 15 (8 6 B 6 (3) i59 i32
SA-2 84 (47) 31 (17) 9 (5 4 (2) 2 i34 108
SB-1 89 (49 19 (22) 19 (i) 4 P 152 132
SB-2 95 (53) R® 0 @2n 15 (8 2 0 (0 150 128
MM-1 87  (48) 4 (19) 15 (8) 6 (3 1 (v 143 25
MM-2 9% (53) 32 (I18) 7 4 0 0 0 (0 i35 12

114/(180 x 48) = 1.3%). This test is therefore more severe that the surrogate test in the previous section. In
contrast, the theoretical rejection level for segments (more than two rejections) corresponds to the observed
value: 5% out of 180 is 9; the null-test finds 8 (column 3). We also find here that real data and null-set show
a similar number of segments with at least one rejection (around 44%, column 1). This percent is almost half
as that for the surrogate test.

While about 7% of all segments have been recognized as non-linear at the theoretical significance level
(more than 2 counts, column 3), this number decreases drastically when demanding more positive counts than
theoretically necessary. We find a persistent non-linearity for the trial series SA-1, which does not change much
with higher number of positive counts. This persistency is linked to a very regular, long-lasting oscillation
in one of the trials. The superior number of non-linearities in electrode 1 as compared to electrode 2 is less
pronounced here or even reversed (sets MA and MB).

The counts presented here are based on the Monte Carlo statistics (Eq. (7)). Counts based on the assumption
of a Gaussian distribution are very similar to these. We only report here the total number of rejections (last
column in Table 2, Pg) as compared to those found by applying the Monte Carlo statistics (last column, Pyc ).

The FNS method provides us also with an absolute statistic, the ratio of false nearest strands itself. Remcmber,
a “good” embedding would show no self-crossings of trajectories in the reconstructed phase-space and therefore
the ratio of false nearest strands should go to zero for data from deterministic dynamics with sufficiently low
dimension and sufficiently high-dimensional embedding space. We selected the segments where Hp covld be
rejected individually for 3 different embedding-sets at least, and looked at the absolute FNS ratio. The results
are in Tabie 3. Coiumn 1 lists the minimal FNS ratio fourd for the selected segments, the second cclumn reports
the corresponding FNS ratio with shuffled last component (mean over 39 realizations, see Section 2.1.2). The
other columns indicate how often a FNS ratio of less than a certain percent has been found, given that the
expected value for correlated noise is around 50%. Aithough some FNS ratios under 50% are found, they
are always far above (40%) the approximately 5% of false strands which the authors of the method judge
significant for deterministic dynamics, based on their experience. The last column gives the total number of
selected embedding-sets.

In Fig. 3 (upper row) we plot, as before, the cumulative results for the FNS statistics (set SA). In general,
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Table 3

£.GN: FNS ratios. First colema: the least FNS mtio (in %) found in the segments seiected as described. The embedding of a deterministic
trajectory shosid give not more thar 5% of false nearest strands. Second column: the comesponding mean FNS ratio with shuffled last
component. The other columns report how often 2 FNS ratio of less than 40%,. . ., 44% has been found. Last column: total number of
embedding-sets selected.

least shuffied <40% <42% <44% total
MA-1 42% 50% 0 0 3 15
MA-2 43% 4% 0 0 2 15
MB-! 42% 49% 0 2 4 16
MB-2 39% 50% I 2 7 25
SA-1 40% 45% H 5 19 36
SA-2 41% 46% 0 2 8 20
SB-1 43% 41% 0 0 3 26
SB-2 43% 47% 0 0 4 19
MM-1 2% 43% Q 2 5 16
MM-2 2% 48% 0 0 7 12

there is a number of data sets where one does not see any cormrespondence between non-linearity and stimulation
Best cases include the backwards direction of moving bars, and the double moving stimulas (MM). The bottom
row in Fig. 3 displays the number of segments (out of ten) for each time slot, where Hy could be rejected
more than 2 and 3 times, respectively. Very few segments are accepted as non-linear, and the reiationship to
stimulation is not systematic.

3.1.4. DVS results

The DVS method has been applied to all those segments which had more than two positive identifications of
non-linearity with the FNS method. First, we search for a total of 104 segments the embedding-sets, where the
null hypothesis of linearly correlated noise has been rejected at the 5% level (not more than one embedding-set
for each dimension, yielding 200 embedding-sets that have been tested}. Then we select each of these particular
embedding-sets to build a series of local lincar models, varying the number of nearest neighbors from two times
the embedding dimension to all fitting vectors in 20 steps (such that the number of nearest neighbors increases
exponentially). The data segments having 1000 points, we perform the test on the last 400 points, taking the
preceding 600 points (excluding those closer in time than the first zero crossing of the autocorrelation function)
as fitting set. The forecasting performance has been evalvated for predictions of 3, 6, 9, and 12 data-points
ahead. All segments tested had the signature of high-dimensional systems or linearly correlated noise. In no
instance did we find evidence of low-dimensionality by this method.

3.2. Neural responses form the optic tectum

3.2.1. General conditions jor analysis

We choose two sets of recordings on two micro-electrodes in the optic tectum of awake pigeons. Each set
comprises ten trials of four seconds of recordings at a sampling frequency of 5000 Hz. Stimulation is by a
moving light bar over the receptive fields, forwards and backwards in each trial. The neural responses are
much more transient than those of the mildly anesthetized cat. This is likely due to the characteristics of tectal
neurons, and to the fact of experimenting with a fully behaving animal.
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Fig. 3. (top) LGN FNS cumulative results. Same conventions as in Fig. 2; segments of 1000 ms ength.
(bottom) Same data as in Fig. 2, reduced statistic for FNS method. Plotted are the number of segments for each time siot, where the He
could be rejected more than 2 times (doited Yine) and more than 3 times (continucus linc).

Set A of the data has been recorded frora very closely spaced electrodes at the surface of the tectum
{electrode distance: 0.3 mm, depth: 0 um). The electrodes for set B had a larger separasion and record from
deeper layers (electrode distance: 1 mm, depth: 190 gm). The light bar in forward direction passes at recording
time 1000 ms, and backwards at 2500 ms. Stimulus conditions are the same for both sets of trials. The neural
response as revealed by the spike activity is almost immediate, starting at time 1050 ms for all electrodes, and
lasting arcund 200-300 ms. While in the case of the cat the experimental setup and the naiure of the data
allowed for data segments of | to 2 seconds (for the question of reasonable cognitive time scales, see below)
segments that long are not pessible in the case of the tectum, and we thus choose segrents of 400 ms length.

The data are highly oversampled; the original recordings have a high percentage of strictly equal paivs of
successive samples. We can therefore reduce the number of data-points in order to reduce computational effort
without affecting the information contents. We have down-sampled the data by a factor of two, obtaining cne
new point from the mean of two successive points. The effective sampling frequency is now 2500 Hz. stil] very
high. This leads to a high risk of artifacts for the surrcgaie method, which is not the case for the FNS method.
As discussed above {Seciion 2.1.2) we thus decided not to anaiyze the pigeon tectum data with the surrogate
method. In contrast, we have studied the first-differenced data’ since this considerably enhances stationarity.

% Each point is calculated as the difference of two succeeding points: x/ = x4 — &1,
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Table 4

Tectum FNS statistics: counts of segments with more thas 0, 3, 7, or 10 individual rejections of Hy at the 95% level (percentage values
in parenthesis, rounded). The last two columns list the total rumber of rejections (out of 14720), the left column based on Monte Carlo
probability, the right colurnn based on the assumption of a Gaussian distribution of the surrogate statistics.

#cis>0 #cis>3 #cts>7 #cts>10 Pyc Pe
Nuil 182 () 59 (26) 14 (6) 4 2) sn 506
Al 179 (78) 7 (33) 20 [$7] 9 (4) 707 636
A2 187 (8hH 77 (33) 25 n 8 3 776 715
Bi 188 (82) 82 (36) 28 (12) n (5) 770 677
B2 205 (89) 101 (44) 35 (15) 14 6) 903 807

This was not necessary for the more stationary cat LGN data.

Evidence for the non-stationarity was clear from the high variability of the first zero crossing of the auto-
correlation function as compared to the case of the LGN. For most segments the first zero crossing iics between
20 and 30 points (8-12 ms), some however going up to 60-90 points (24-36 ms). We choose thereiore
embedding time-iags of 4 to 32 points in steps of 4 points for embedding dimensions 1 io 8. The zero-crossings
for first-differenced data (after down-sampling by 2) lie between 9 and 12 points; very few segments had their
first crossing at up to 16 points. Time lags in this case has been chosen as 2 to 12 points, in steps of 2 points.

3.2.2. Results for false nearest strands

The FNS method has been applied to data segments of 400 ms (1000 points) length; zach trial has been cut
in 23 overlapping segments. As before, Table 4 lists the number of segments for the four sets of trials, where
individually the null hypothesis of comrelated noise has been rejected more often than 0, 3, 7 or 10 times out of
all 64 embedding-sets. The percentage values (in parenthesis) are calculated on a total number of 230 segn:cnts
per set. The last two columns lists the total number of rejections (out of 230 x 64 = 14720) for counts based
on Monte Carlo Statistics (Pyc) and on a Gaussian approximation ( Pg). The first row again reports the same
results for a series of null-data, created from set B1 by phase-randomizing each segment before it enters the
test. The observed count of false positives on the total is 3.9% (Pyc, 577/14720).

With a significance level of 95% for each test individually, and 64 different embedding-sets per window
tested, we requirz 1t least 3 positives (5% of 64) to reject the nuli hypothesis for that data segment. However,
this required 5% level in the null-test is only reached for more than 7 counts (column 3). The number of
segments with more than the formally necessary number of individual rejections decreases less markedly than
in the case of the thalamus, leaving us with around 10-15% of all segments at the observed 95% level.

If we consider now the ratio of false nearest strands, we find a more convincing result than in the case of the
cal. As before, we selected the segments where Hy could be rejected individually for 5 different embedding-sets
at least, and looked at the absolute FNS ratio. The results listed in Table 5 show that we are still far from the
5% for deterministic dynamics, but the best false nearest strand ratios decrease now down to 35% and there is
a sizable number of segments between 36% and 40%.

We also applied the FNS calculation to the first differenced data as shown in Tables 6 and 7, which
should be compared to Tables 4 and 5. Since we performed ilie test on only 48 different embedding-sets, the
significance level is reached at more than 2 rejections, theoretically, but more than 3 rejections are actually
required (column 3). The absolute FNS ratios of the first differenced data are worse than in the case of the
raw data. This is to be expected, since first differencing augments noise. However, it is useful to do this
calculaiion to check against the hypothesis that non-linearities arise only because of non-stationarity. Also, for
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Table 5

Tectum: FNS ratios. As in Table 3. First column: the least FNS ratio (in %) foend in the scgments selected as described. Second column:
mean ratio of false strands with skeffled fast component for ihis window. The other columns report how often a FNS ratio of less tua
36%... ., 44% has been found. Last column: total of embedding-sets considered.

least shuffied <36% <38% <40% <42% <44% total
Al 5% 48% 1 5 19 43 109 23
A2 36% 46% 0 6 19 51 133 237
Bi 35% 43% ] 6 20 65 133 254
B2 6% 48% 0 8 29 i 181 328
Table 6
Tectum FNS statistics: first differenced data. Compare to Table 4.
#cts>0 #cis>2 #e1s>3 Hcis>S Puc Fs
Nuil 134 (58) 26 () 12 {5) 2 (1)) 248 200
Al 1712 (7% 57 25 33 (14) 10 4 399 334
A2 179 (78) 50 (22) 26 (an 6 &) 383 kir
Bl 161 {70) 60 (26) 42 {18) 15 n 447 401
B2 159 (69) 49 a@n 20 9 2 (2)) 33 278
Table 7
Tectum: PNS ratios, first differenced data. Compare to Table 5.
least mean <38% <40% <42% <44% sotal
Al 40% 48% 0 2 9 46
A2 2% 49% 0 0 ] 13 4?2
Bl 39% 46% 0 ! 6 34 91
B2 4% 48% 0 0 2 8 18

truly low-dimensional dynamics first differencing should not change the results [29].

Fig. 4 (top row) shows the cumulative results based on the Monie Carlo estimator of the FNS staiistics
agaast time as in Fig. 3 for one of the four sets analyzed. The left column represents the results obtained from
the raw data, the right column those of the first differenced data. This set (B1) shows enhanced occurrence of
non-linearities during the two stimulation periods (indicated by the horizortal bar) for both raw data and first
differenced data. The results of the other sets are less conclusive.

Looking at the reduced statistic, that is, counts of segments where Hy could be rejected more than 7 and
9 times for the raw data (64 individual tests) and more than 3 and 5 times for the first differenced data (48
embedding-sets tested), the result for set Bl is confirmed (Fig. 4, bottom row};. The dashed lines represent
the less demanding statistics (7 and 3 positives requested, respectively), and the continuous fine represents the
more stringent statistics (9 and 5 positives requested, respectively). Clearly, the non-linearity is refatively labile
since few survive this increase in stringency.

Fig. 5 shows the counts of positive embedding-sets over time for all triais of the most promising set, BI.
Again, the left column stands for the raw data, the right column for the first differenced data. Each line draws
the number of embedding-sets leading to a rejection of Hy. The step height corresponds to 15 counts. There are
large variations from trial to tria!: compare for example, trial 3 and trial 7, left column. While the cumulative
resuls show an enhanced number of non-linearities during stimulation, the individual trials are less conclusive.
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time/ms time/ms
Fig. 4. (top) Tectum FNS cumulative results: left column, original data, right column, first differenced data. Shown here only results from
data set BI. Horizontal axis: time. Vertical axis: counts of individual rejections of Hy. (bottom} Tectum FNS reduced statistics. Same
conventions as in Fig. 3 for the same data presented in the top row. Vertical axis: number of segments (out of ten) where Hp could be
rejected for more than 7 ard 9 different embeddings (original data) and more than 3 and 5 embeddings (first differenced data).

Figs. 6 and 7 show in greater detail two trials, trial 5 and trial 7 of set B1. The figures include the original
data (field potential and spike activity}, the FNS counis for the original data, the first differenced data, and the
FNS counts for the first differenced data.

In trial 5 the neural osciliation arising after stimulation is clearly seen, ¢ven during the second stimulation
where the spike activity is less pronounced. The non-linearity statistics follows roughly the stimulation periods.
In contrast, trial 7 shows less clear response to the stimulation, but a comparatively large peak in the FNS
statistics at time 2600 ms and 3400 ms. Obviously, there is no robust and simple correspondence between
stimuiation, cell response and occurrence of non-linearity in these data.

3.23. DVS

We applied the DVS method on data segments, where the null of linearly correlated noise has been rejected
for at least 5 different embedding-sets. As in the case of the ihalamus, we search in the tables of FNS ratios those
embedding-sets, where the null has been rejected (maximally one for each embedding dimension). A total of
1035 embedding-sets on 248 data segments has been tested. None of the tests gave support to the hypothesis of
low-dimensional dynamics: ali DVS plots show the same signature characteristic for high-dimensional dynamics.
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Fig. 5. Tectum FNS trial by wial individual counts for series BI based orn MC statistics. The distance between lines comresponds to

15 counts.

4. Discussion

4.1. The framework

sensori-motor coupling and producing a number of endogenous rhythms and state transitions. It scems unsea-
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first differenced data. We show a bes: case of results where both statistics show enhanced significance for non-linearity during the cells

msponse.

sonable to seek for a global, low-dimensional deterministic dynamics in such a situation. We have to clarify
here what we mean by low-dimensional. If the brain dynamics is confined for some brief time to an attractor
of, say, dimension 100, we certainly may call this event low-dimensional, compared to the enormous number of
degrees of freedom the complete system possesses. But for the experimentalist this “low” dimensional behavior
is not distinguishable from a infinite dimensional one.

The question is not whether the brain is a non-linear system or not; we assume that it definitively is. The
question we attempt to answer is whether we can see this non-linearity in our recordings and under what
cenditions, and, further, if we are able to characterize it. In other words, we ask whether the application of
non-lincar methods is in principle able to provide us with characterizations which are not available through
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Fig. 7. Tectum recording, series Bl trial 7, showing a poor case of resuits. Conventions as in Fig. 6.

much simpler and less errorprone linear statistics. Accordingly, our approach: here seeks to “reduce” in some
way the circumference of the recording site in taking only local recordings in the hope to separaie a subsysiem
and to study its dynamics. In addition, we selected the type of signals to be used so as to maximize the chances
that they correspond to a cognitive task. Thus we selected visual discrimination responses in visval pathways
linked to synchronous neuronal populations. We have a precise knowledge about the onset and duration of the
stimulations, as well as the immediate cell responses.

We are now in the position to say that our strategy has been fruitful in that we could submit our time series to
detailed statistical scrutiny and come up with reliable answers. As a whele, it can be said that there is evidence
for non-linearities in the LFP recordings we have examined. When they appear, they do seem often correlated,
as expected, to the onset of the neuronal synchrony that accompanies a visual respopse. It must also be said
that electrical traces obtained under similar conditions did not always give consistent resuns, and that the traces
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of non-linearities were relatively fragile when tested against strinsent criteria.

We have observed not onc case which disptays low-dimensionality. We are led to the conclusion that methods
designed to characterize low-dimensional chaotic systems, like dimension analysis or estimation of Lyapunov
sxponents, are not suited for the analysis of these data. These methods, howzver, may provide help in the design
of empirical tools to uncover further properties of these data.

4.2. Why not more non-linearities?

Why didn’t we find, as one might expect under these ideal conditions, robust traces of non-linearity? A
first step to answer this question is 1o notice the discrepancy between the time scales where we expect some
coherent dynamics to underly a cognitive task, and the time scales we are forced to use due to the strictures of
ihic analysis procedures. Microscopic cognitive everts such as visual discrimination happen on a time scale of
around 100-300 ms [48]. The frequencies in the signal are in the range of 5-80 Hz, with the maximal power
usually attained around 10 Hz and sometimes around 30 Hz. Reasonable time segments for non-linear analysis
metheds require at least, say, 5 cycles of the lowest frequency, or 500-1000 ns. In other words, we do not
expect a stable dynamics over the time necessary to collect sufficient information about the supposed attractor,
and this may well be the cause of its elusive character in our results for the tools at our disposal.

It could be argued that cognitive relevant activity is mainly reflected in higher frequency bands, and declare
the lower frequencies to be extra weight in this regard. We could thus try to pursue a search for noa-linear
structure in higher frequency bands only, and thus use shorter time series. But how can one reliably eliminate
the low-frequency “trends™ without introducing more ariifacts than we wish to discard? One might be tempted
to propose adaptive filtering techniques. This, however, is a difficult job, all the more so that there is little
detailed knowledge about “first principles” on inner mechanism producing the observed frequencies.

Finally, it is very likely that despite of the control of behavior and the localized nature of the recording sites,
the neurai dynamigs is still too high-dimensional 1o be seen by a few electrodes.

4.3. Possibilities for future improvements

We have exploited to the best of available techniques a reliable search for non-linear components in single
electrode recordings. It has to be emphasized that there are no comparable studies in the literature to date.
We have found several possibilities to erroneously classify artifactual non-linearities. While we didn’t work on
neise reduction methods, we still think our findings relevant: our question was a first order one and since we
didn’t find any really robust and stable non-linearities, more sophisticated state-space reconstruction techniques
should be looked at with skepticism.

What could we do to improve our methods? It is obvious that the brain is an inhomogeneous, spatially
extended system, and that we get only scarce information from it when looking only at two electrodes. The
obvious alternative is to record from multiple sites, which is known to be a technically laborious neurobiologicat
problem. Further, multivariate non-linear data analysis is far from having reached the state of a standard tool.
Today, we simply do not know how to fully exploit multivariate data in a dynamical systems framework.
Such basic questions as to whether (1) the recordings on the different electrodes are truly recording new
{independent) information, and (2) if the electrodes are recording from the same dynamical sub-system, do
not have a satisfying answer.

State-space reconstruction from spatio-temporal signals is still in infancy: to our knowledge there are no
resulis beyend either time-lag reconstruction from scalar time series, or taking muliiple sources as basis for
the recoastruction space. We have applied this latter approach to obtain global EEG indicators of pathological
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conditions with some success, see [28]. But what is needed is a combination of both reconstruction techniques,
in order to exploit the dynamical history at each point plus the combined activity together, as in the reconstruction
into a matrix state-space proposed by [1].

Besides the question of more data, we emphasize the need for betrer data. That is, we need extremely ciean
data, much cleaner than what is obtained today by the competent neurophysiologist who does sot confront
these issues. Any known noise sources must be minimized before the recording is done. For instance, power
line noise might be tolerable within the linear framework, since it is easy to identify spurious frequencies which
can be filtered with classical tools. In our Thalamus data we were forced to compromise by filtering a peak of
150 Hz noise which fortunately is largely distant from the range of physiological significance. But in general,
in non-linear data analysis there are no a priori unimportant frequencies and no intrusions should be tolerated.
All known filter techniques do more harm than good in this respect. This highlights the need for a kind of
neurophysiology that conducts experiments with the constraints of such data analysis in mind.

In the long run, obviously, precise techniques for characterizing high-dimensional chaos are going to be
necessary for significant zdvances in this area. Until then, we probably have to content ourselves with less
ambitious methods, which are less demanding in data quality and quantity. We have in mind for example
spectral estimations of higher order, which provide the first steps beyond linear analysis and therefore more
insight in the time series’ properties, but are still manageable problems with analytical results.
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