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Abstract 

The question of the presence and detection of non-linear dynamics and possibly tow-dimensional chaos in the Main is 
still an open question, with recent results indicating that initial claims for low ~mensionality were faulted by 
statistical testing. To make some progress on this question, our approach was to use suingent data analysis of 
controlled and behavior-ally significant neumek~,~ic data. There are strong indications that functional brain activity is 
correlated with synchronous local field petentials. We examine here such syncMonous episodes in data recenkd from the 
visua.t system of behaving cats and pigeons. Our pml~ose was to examine under these ideal conditions whether the time 
series showed any evidence of non-lineatity colgommitwfly with the arising of synchmny. To test fog non-iinear~ we 
have used surrogate sets for non-linear forecasting, the false ncafest sUam:h meflaxl, and an examination of detenninis~ vs 
stochastic modefing. Our results indicate that the time series under ~ do show evidence for traces of newlineat" 
dynamics but weakly, since they are not mb~t under changes of pwameL~. We conclude that Iow-dimensio~ chaos is 
unlikely to be found in the brain, and that a rol~t  detection and c ~  of hisher-dingnsional non-lineag dynami,~ 
is beyond the reach of current analytical tools. 

1.. In trodnct ion 

i.1. Non-linear dynamics and the brain: The question 

The main purpose of this paper is to report on a first systematic attempt to statistically wove the p r e sm~  
of non-linearifies in time series of single-cell neuroelectrical data recorded under cm'efully cona'olled and 
behaviorally significant conditions. This ~s a much less ambitious task than proving the presence of tow- 

dimensional chaotic attractors in lesser controlled and more macroscopic signals in the brain (such as scalp 
EEG recordings). Checking for nonlinearities is a modest but necessary step town, Is a deeper unders ta~ag  
of the dynamics. Should the detection of non-linearities in this test case prove to be impossible, the s e ~ h  
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for chaos in other conditions of brain studies would be seriously put into question. As detailed in this paper, 
non-linearities in our signals appear to be present, but rather weakly. 

In fact, the study of brain signals with the methods of non-linear dynamical systems theory has gained 
much attention during the last decade [3J. Most eft'o~ has been put in estimating dimensions of putative 
low-dimensional chaotic attractors in scalp EEG recordings following the Gr',tssberger-Procaccia method [ 10] 
or variants thereof. Such e.ady approaches are known today to be poor means to identify iow-dimensionality, 
and noloriously unreliable since these algorithms may erroneously claim Iow-dime•sionality where the signal is 
actually linearly correlated (colored) noise [30], especially when applied to short tim~ series of non-stationary 
systems. Most of the results obtained with dimension methods have to be reviewed with great care. Recent 
results bear out this conclusion in EEG [45,41,32]. 

In addition to problems stemming from this type of signal analysis, the use of EEG scalp recordings, 
which are large spafal aver--ages of neuronal masses filtered by the skull and the scalp, recorded either free- 
running or during complex cognitive tasks (such as comiting or semantic discrimination), preclude very clear 
interpretations of a quantitative analysis. It is hard to imagine that the brain enters into a very homogeneous, 
stationary low-dimensional "counting-numbers" dynamics. Tasks of this kind involve multiple-distributed and 
temporally unstable mechanisms: changes in dimensions in terms of overall cognitive processes of the brain is 
bound to be an impossible task. 

In order to g~t more telling results, we have followed here a more simple and precise strategy. Firstly, w e  

have selected our time ~-ies from very local neural responses. More precisely, we have studied recordings from 
two micro-e[ectrodes placed in brain areas involved in the early stages of visual pathways (the optical rectum 
of pigeons and the thalamus of cats). The electrodes were such that they recorded from a few neighbo~ng 
neurons, as seen in their local summed electrical field or local field potential (LFP), Far,her, the animals were 
recorded while fully awake and subject to visual stimulations wh.;ch are perfectly well controlled. 

Second, we are interested in the data that n_,[~,play transiently oscillatory behavior, leading to a coherent or 
synchronous activity among mu|tiple neurons. It has been argued that these neural synchronies are a good 
correlate of cognitive processes since they permit an ensemble of neurons to he coactivated to produce a 
behavioral meaningful action (see e.g. [36] ) Our study is focused on those periods of neural activity where 
synchronies have been observed during a behavioral visual discrimination [22,20]. We can be maximally 
assured that our time series do reflect locally a dynamics of biological relevance. 

Phase synchronization of brain signals can be understood as a complex, emerging phenomenon between 
distant neuronal ensembles. We expect therefore to find traces of non-linear dynamics in association with the 
synchronization process which o,Jr data sets follows very precisely. Of course, transition states in networks 
of coupled non-linear oscillators are well known in some model cases [38,15], and this constitutes a further 
justification for the search of traces of non-linearities by statistical methods based on dynamical systems 
theory. Only throuf, h a multi-approach testing can we be assured that such non-linearities are present in the 
neuroelectric data. More specificaDy, we have applied three methods to test for non-linearity: the construction of 
phase-shuffled surrogate data and subsequent comparison of their forecastability by a simple non-linear model, 
the method of "false nearest strands" and the "deterministic-versus-stochastic modeling" procedure. 

This paper is structured as follows: for the remainder of this section we clarify our overall .~tting and 
rotation, in Section 2 we detail the three methods employed in this study. Section 3 presents our findings, 
followed by Section 4 where we draw our tentative conclusions and suggestions for further improvement in the 
study of non-lin~x properties of brain data. 



3. ltl~ller.Gerti~g et al.lPhys~a D 94 (1996) 65-91 

!.2. Dynamics and determinism: Formal setting 

67 

As is ,veil known, non-linea" models may be very simple and still account for a large pagt of very con~g~ 
behaviors. Unfortunately, however, in the first yeas of enthusiasm rese~chers often forgot that w~le some 
low-dimensional models may behave in a complex unpredictable fashion, there is nothing indicating that all 
random looking behavior is due to low-dimensional chaotic systems. If one claims on p h i ~  g r o u ~  
that all events are deterministic, as long as the systems raling these deterministic events are of extremely high 
dimension, the claim does not help in any way the analysis of data from such systems. Such syster~ wiU 
appear indistinguishable ~om random noise, and this is why for decades statistical methods have worked oat 
well and are still valid approaches to these kinds of olnervaions. 

The novelty opened by non-linear dynamical methods lay in the middle ground between these extremely 
high-dimensional systems and the simplicity of low-dimensional (deterministic) linear systems. So, the only 
systems where the newer findings may find application ate still systems of relatively low d i ~ .  While 
chaos (i.e., random looking behavior from deterministic systems) seems to be a universal phenontcm~ in 
nature, low-dimensional chaos may be much less frequent. How "low" the dimension must be in order to see 
the determinism depends on the system itself (e.g., its Lyaponov exponents) and the observation 
From scalar time series of moderate length, the dimension should be sensibly less than ten, to distinguish the 
data from purely random ones. In the following, when we write "chaos", we impli~t!y ~ l o w ~  
dynamics. Then tl~re are "mixed" ~¢!_~ ,  ",~,'-~|,, under lucky circunutm~ces, may be separaed into a dominant 
low-d_.;.~.~'~sionai part and high-dimensional contributions. The issue of concern to us can now be stated thus: 
within the panorama just sketched, to which category do locally recorded neuroelectfical responses from a 
behaving animal belong? 

To introduce our notation, we follow usage by assuming when analyzing data recorded from an unknown 
dynamical system, such as the brain, that the system is defined in terms of (unknown) ordinm'y differential 
equations, 

du(t) 
d--/-- - F(.(t)) + n(t). ( l )  

with u E R" and F :  R" --, R" a "well behaved" function. In the absence of ~t(t ), that is, 11(t) - 0, Eq. ( I )  
implicitly defines a deterministic flow in the state space Ra; a solution of Eq. ( ! )  u(t) for some time interval 
to...  tt describes a trajectory in the state space (or phase space) R n. 
The forces q(t) reflect our incomplete knowledge of the state of the whole system. In simulation studies q(t) 

is usually considered as noise and modeled by an appropriate stochastic process. In the parlaace of Tong [46] 
F(u(t)  ) is called the (deterministic) skeleton of the dynamics which is clothed by the noise. Since this term 
enters the dynamics of the system, it is referred to as dynamical noise. We do not wa,-~ to enter the eternal 
debate whether there exists true randomm~ or not: q(t)  may result from perfectly deterministic processes, 
from which, however, we have no information in our data. Given the multitude of possible ex~nul influences, 
we expect these processes to be of extremely high dimension, so that they effectively appear as random. 

We take now a series of k simultaneous measurements (in our case electrical recordings) of our system ( | )  
at discrete time steps At and obtain a time series of/~/points, 

{X,-~.A,} X E R ~ o <_ i </¢. (2) 

in observation space R t, with l /At t.~ sampling frequency. This observation process may be modeled mathe. 
matically by 

x, -- i ( u ( t )  ) + 0 , ,  (3~ 
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with some (unknown) observation function h : R n --, R k and observational noise Or. Again, we want to stress 
the point that what we call "observational noise" may well stem from other deterministic processes, from which 
we have no further knowledge, and which are of very high dimension. In this paper we consider only scalar 
time series, that is, k = 1 and we write the series as {xt}. As we shall see, multi-site recordings will most 

certainly be essential for future studies of brain dynamics. 

!.3. Reconstruction of  the system's state space 

Since we don't have access to the dynamical system itself but only to a time series of ob~rvations, we 
have to reconstruct a suitable state space for the unknown system from these observations in order to find any 

characteristics of the underlying dynamics. This is possible by the method of time delays. Sauer et al. [35] 
extending on previous work of Whitney [49], Packard et ai. [25] and Takens [39] proved that in the absence of 
noise, unlimited number of data points and fairly generic conditions on the system equations F and observation 
function h, the delay vectors x ( t )  E R d, constructed according to the rule 

xtt) = {x(t),x(t - ¢),x(t - 2~') .... x(t - (d - I)~')}, (4) 

form an embedding of the, dynamical system. The condition is that the embedding dimension d be greater 
than two times the box-counting dimension of the attractor A of the dynamical system~ _Then, the map from 
the attractor A to time-lag s-pace R d defined by this prescription is one-to-one on A and an imnlersion on 

each compact subset C of a smooth manifold contained in A. If the reconstruction is an embedding, the most 

important properties of the original system are preserved in the reconstructed space ~ d  characterizations of 
the reconstructed system apply equally well to the original one. It should be noted that the use of time delay 
vectors is by no means new and goes back at least to the work of Yule [50] (see [6] ). The truly new insights 
[wought by dynamical systems theory is the existence of geomeuical invariants which are preserved under the 

reconstruction. 
Other approaches to reconstruct a system's state space are possible and have been proposed (see e.g. [4,9] ). 

These methods start from the time-delay reconstruction and try to compress the information given into a new 
space of smaller dimension, and subsequent calculations are less time consuming. In this paper, we have not 
tried to optimize over the direct time-delay approach. 

There is a vast literature about how to choose the "best" embedding parameters delay time 7- and embedding 

dimension d for the time lag method (.see e.g. [9,18,33] and references therein). While the general theorems 
do not help in the choice of these parameters, the concrete values are of great iml~rtance for practical state 
space reconstruction, that is, reconstruction from a limited set of noisy observations. Again, we did not seek 
to optimize our choice but tried systematically over a wide range of "reasonable" parameter values according 
to tt'e intrinsic time scales of our data. We do this also in order to see the robustness of the non-linearity: 

non-linearities stemming from low-dimensional dynamics should be insensitive to reconstruction parameters 

in a wide range. The discrimination statistics should improve for higher embedding dimensions. Finally, the 
method of false nearest strands we use to test for non-linearity, has originally been designed for the purpose of 
estimating these embedding paran~,ters. 

The presence of noise in the dynamical system or in the observations seriously complicates the situation. 
Casdagli et at. [6] worked on the problem of information lost due to the projection to a low,4imensional 

observation space by the measurement function, In this view, each measurement is considered as carrying 
information about the localization of the state u(t)  in the original state space. Uncertainties or noise in the 
observations allow only for approximative localization of the original state. Casdagli et al. show that this 
localization may be impossible from scalar measurements, even for moderate values of dimension, Lyapunov 
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exponent and observation noise. Consequently, any trace of determinism is lost and the observation of the 
chaotic dynamics becomes a truly random process. The only way to "see" more of the dctem~ism is ~o gather 
more and better information from the system. This includes as well knowledge on the system other than from 
its observation, possibly from some explicit model. 

1.4. The search for non-linearities 

Characterizing a dynamical system on the basis of an observed time series consists of two ~ steps: 
the reconstruction of a suitable state space, and the estimation of some characteristic quantities of the dynamics, 
estimated on the trajectory in reconstructed space. Since we do not have any idea of the system's d y ~  
equations and the analytical form of the observation function we have no direct way to check whether our 
embedding procedure succeeded and that we actually have a relevant representation of the dynamics. What 
usually has been done in this case is to calculate some system invariant (such as correlation dimension or 
Lyapunov exponents) as a function of increasing embedding dimension. Once a sufficient embedding dingnsion 
reached, the estimated invariant should saturate at the con'ect value. High-dimensional systems should never 
show saturation, independent of embedding dimension. 

This approach, however, has Woven to be of limited reliability. Procedures like the G r ~ - P r o c a c c i a  
algorithm [ 10] involve subjective judgments, for example, on the presence of plateaus which twk, e its applica- 
tion difficult. Even if errors like those reported by Osborne and Provenzale [23] can be avoided when 
applying the method [40,11], calculations of some invariant alone are no more accepted as reliable imiicaten 
of low-dimensional dynamics. 

Rather, the idea that has been explored recently is to test the data first for the presence of m m - l i ~  
one tries to reject the null hypothesis that the signals recorded are linearly correlated Gaussian noise. From tl~ 
viewpoint that the time series recorded contains information about the dynamical system under investigatknL 
testing for non-linearities can he regarded as a test whether tl~ time series recorded contains information 
beyond the classical second ordw statistics, that is, auto-correlation or power spectrum. Once the presem:¢ of a 
non-linearity is clearly Woven, one may attempt to characterize it. 

We have mentioned above how information about the dynmnical system can get lost by the wojection to 
a low-dimensional observation space. Inferring from rcconstngted trajectories introduce additional sources of 
estimation errors, due to insufficient length of the time set'ies, or non-stationatities. In line with. cite CenwA 
Limit behavior, this information lost due to low-dimensional Woj.ectJons, uncertainties and estimatiov ¢tro~ 
will eventually add up in a way such that the time series .appears to be Gaussian noise (perhaps transformed 
by a static non-linearity in the measurengnt function). 

Technically speaking, we try to reject the hypothesis that linear models of the form 

p q 

(linear auto-regressive, moving average (AP~tA) models), with ~ paran~ers ai, Bi and Gat~ian innovations 
er is all we are able to infer from the given data. These time series are completely determined by their spectra. 
or, because of ~he Wiener-Kinchin theorem, by their auto-covariance. No ~additional information is specified~ 
for example, on the rel~ionships between the phases of different i n d ~ t  frequencies. Non-lineari~s, by 
contrast, necessarily involve specific relations among the phases of diff~eut frequencies. This is why filtering 
out some frequency band to |onk for chaos in brain recerdings (e.g. the alpha band 8-12 Hz [37]) can never 
succeed since by the filtering we eliminate any information which might allow us to detect the non-linearity. 
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There ~'e many approaches to test for the presence of non-linearities in time series. Classical statistical 
methods first "°oIeach" the data by fitting linear auto.regressive models (AR), eliminating thus all linear 
correlations. Then, one tries to find some additional structure in the residuals of the linear fit, by using models 
with higher order terms [ 16,17,34,27,47]. These methods are very well suited for data whose linear part can be 
modeled by low-order AR models and test the hypothesis of linearity against rather specific alternative non-linear 
models, like higher order Volterra expansions [ 17], smooth thseshold auto-regressive models [47,I6], or smooth 
exponential threshold auto-regressive models [27]. The assumptions of such alternative hypotheses demands 
supplementar~ knowledge about the putative processes which have created the data, a knowledge which is not 
a,,~lab|e to us in the case of brain time series. Also, these tests are very sensitive to incomplete elimination 
of the linearifies, leading to false claims for non-linearity where some linear relationship is still present in the 
residuals. Thus, highly auto-correlated data like ours are diffficult to treat with these algorithms. An exception 
is provided by l-finich, who proposed a test for non-linearity based on higher order spectral components [ 12], 
in particular the estimation of the bispectrum, therefore searching for inter~frequency relationships which are 
t~ical for non-lineafities. 

Consequently, we propose to concentrate here on another series of methods inspired by non-linear dynamical 
systems. The objective is the detection of traces of some dynamical non-linear system in the recorded data. The 
results in this paper have been obtained with three methods: (1) First, we compare phase-rar~domized surrogate 
data with the original time series by means of a simple non-linear forecasting procedure. (2) Second we apply 
the recent method of "false nearest stiands" which probes into some geometrical properties o.*" the reconstructed 
state space. (3) Third, we use a method which tries to evaluate the degree of determinism, as ng~ured by 
oul-ofosample forecasts of a continuum of model classes. We preferred these tests since we hoped to gain 
further insight into the nature of the non-linearities. In particular, data from low-dimensional chaotic systems 
should show a characteristic behavior in function of the embedding parameters. The more classical statistical 
approaches mentioned above do not provide this distinction. The following section explains these methods in 
greater detail. 

2. Methods 

2. I. Methods for  time series analysis 

.'} i . . . .  1. ~ e  method of  surrogate data 

The method of surrogate data is an application of so-called statistical bootstrap methods (for a review see 
e.g. [8] ). These methods allow the testing of statistics against null hypotheses whose distribution function 
cannot be derived analytically. Instead, the distribution of the statistic of interest under some Ho is estimated by 
computer simulations and the test is done against this empirical distribution. The main difficulty is the procedure 
to create convenient realizations under H0, which is necessary for reliable estimation of the statistics' distribution. 
In our case, we want to test against a H0 of linearly correlated noise. Therefore we need an algorithm which 
creates many realizations with the same linear properties as our original data but otherwise random. Usually this 
is .,.lone by randomizing the phases in Fourier space. This preserves the frequency spectrum, while destroying 
any relationship which might exist among the phases and which would account for non-linearities in the tested 
data t. Surrogate creation by this technique was introduced in the field of non-linear data analysis by Osborne 

J Due Io the ce~u~- I i~  behavior and ~hc Gaussian d i s u ~  of the random numbers used to shuffle the phases, the individual points 
of the surrog~s ume series cremed as described, have a tendency towauls a Gaussian distribution themselves. This will give false positive 
resu~.~ if the d ~  of the origlnal time series had a strongly non-Gaussian di.~ributlon. To protect against this case one modifies the 
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et al. [24] and made popular by Theiler et al. [42,43]. A parallel implementation has been proposed by 
and Isabeile [ 14]. 

In order to discriminate the possibly non-linear time series from its liana" surrogates, we need a statLqics which 
depends crucially on the supposed non-linear properties. Several meth~$ have been proposed |42,43,26,I4~. 
Theiler et al. recommend using several discrimination statistics based tm apwoved methods of t m n - l ~  data 

analysis, namely, correlation dimension, non-linear forecasting error and Lyapunov exponents. 
The statistics are calculated for the original time series and tested against the distribution estimated from an 

surrogate time series. If the original data can he distinguished from the re.-sampled ones with good 
we may reject the hypothesis that the data arose from a process descrit,cd by the linear model a~l assmme 
non-linear structures to he present. The significance may be estimated as difference of the original and the 
mean surrogate value, normed by the standard deviation of the surrogate values. Let Q denote the statistics, 

Puo = (Qmn) the mean over Q applied to all surrogate data, and arH o the standard deviation of Qsan. 
define S by 

S - jQ~g -/,tH0] (6) 
O'Ho 

The units of this dimension-less quantity are usually called "sigmas". If, in addition, the distribution of the statis- 
tic is Gaussian, as numerical experiments indicate, a P-value can he calculated by P(; = 1/2[ 1 + erf(5/vr2)]. 

Alternatively the significance can he estimated by the Monte Carlo probability PMc. Tiffs robust empirical 

measure of probability is defined as 

Puc = number of cases (Q < Q~s) , (7) 
number of cases 

where "number of cases" includes both surrogates plus the original. Here we arc interested in finding Q~s 
smaller then the statistics for the surrogates, such as non-linca¢ forecasting error or correlation dimension. We 

can reject the null hypothesis at a confidence level of Puc = l/(Nsun+ l)  if Qsar < Qonl for all/gsm 

(see [311). 
Another evaluation of the significance of non-linearity used here, well suited in the case of non-lineal 

forecasting errors as discrimination statistics, has been proposed by Kennel and Isahelle [ 14]. They use a 
simple model where the forecasting is done by searching the neaa'est neighbor in phase space, excluding those 
data points which are closer in time than some empirically determined decorrelation time, thus correcting against 
ovcrs~,n.pling. Unlike Thcilcr et al. they don't compare the means of the prediction errors for the origieml and 
the surrogate data, but the distributions of the forecasting errors themselves by means of the Maem-Whimey 
rank sum test. This mrameter-frcc test calculates from the two sets of forecasting errors a quantity Z which 
is normally distributed with zero mean and unit variance under the ~ul! b y - - i s  that the two sampies came 
from the same distribution. Since this statistical test supposes the samples to be i ~ t ,  and the fo~kst ieg 
errors of successive points of a highly autocorrelated time series are surely not independent, only a s u ~ t  ~f the 

null hypothesis and tests against the stronger null I~q~hesis that t/~ dam stem from a//near random process, wuns/ormed by a 
non-linearily. To crea~ surrogales for this stronger null hypothesis, one ~ re-scales the odginaJ dam to have a ~ 
dis~lxstion. That is, one makes a series of Gussian nmdom n ~  with the same length as the originnl data and sorts them so tbaz beth 
.series have the same rank smJctum. From this "gzussi~izcd" Mnc scales a ~ is built as described above. The coacc~ suaQgnfc 
finally is obtained by reordering the original data as to ha~e lhe rmm~ rank sUuctm~ as the phase randomized ve~E~ of ehe g~m~i~miz~ 
data. Evidendy, this ira:serves the d ~  of the odghtal data points, since the smmgales me nothing bet a slhefi~led vafiam of them. 
The trick is a controlled shuffle which preserves the fiaear dependencies of the original 6me series. Alternatively, one my work with t]~ 
gaussianized time series itself. 
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errors are taken into account. In what follows, the surrogate tests were done with a Mann-Whitney statistics, 
following Kennel, on whose implementation ours is based. 

As we discuss below, it seems that the FNS method is both more reliable and less costly in CPU time than 
the surrogale method just described. However, in order to provide a clear link with current literature which uses 
extensively the surrogate approach, we have used both tests for the set of data from the cat's LGN, but not for 
the pigeon rectum data. The LGN data was more adapted, since it was less oversampled, and het.ter stationarity 
allowed for longer segments of analysis. 

2.1.2. The method of false nearest strands 
The initial .'noti~ion of this method is to find best emh~.4ding parameters, time-lag ~" and dimension d. It 

can, however, easily be extended in a natural way to provide a fast and reliable test for non-linearity. In order 
to test if some embedding makes a deterministic map, one ex~'mines the number of self-crossings of trajectories 
in the reconstructed state space, if the unknown evolution in the original state space is deterministic and the 
embedding is "good", that is, one-to-one on the attractor, there will he no self-crossings of trajectories in the 

reconstructea state space. The method of false ~earest strands [ 13] improves over a former approach of false 
nenrest neighbors [2] in that ;..t accounts for highly oversampled data and small time delays. 

The idea behind false aearest neighbors is to check whether nearest neighbors in the reconstructed state 
space are neighbors due to the dynamics ("true nearest neighbors") or rather due to the projection of the 
uriginal state space into a space of inappropriately low dimension ("false nearest neighbors"). To this end 
one looks for nearest neighbors in a d-dimensional reconstruction space and calculates the distance of these 
points in a (d + l )-dimensional space, constructed by adding the d + 1st coordinate. If the distance in the 
higher dimensional space is very large, we have found what is called a false neighbor since the two points 
are close in d dimensions only due to the too low-dimensional projection. In contrast, true neighbors in d- 
dimensional space will remain neighbors in (d + 1 )-dimensional space. The ratio of false nearest neighbors 
over all pairs of neighbors tested should go to zero when we have found a good embedding. This statistic 

based on counts of false nearest neighbors, however, is affected by high temporal correlation in the data due 
to oversampling, or emheddings with very short time delays. These consideration has led the authors to count 
false nearest strands rather than false neighbors individually. A strand pair is made of all pairs of points within 
son~ time interval which are mutually nearest neighbors and direct iterates of one &aother. Now, instead of 
identifying false embeddings by the number of false nearest neighbors, we examine the distance of strand pairs 
in different embedding dimensions. There are multiple ways of defining when a strand pair is false. Kennel and 
Abarbanei [ 13] chose to designate a strand pair as false, if the average "extra distance" in ( d +  l)-dimensional 
space is too large. That is, they compute the mean absolute distance on the d + 1st coordinate for a whole 
strand pair. The strand pair is declared false if this additional distance is larger than some parameter p of order 
unity, times the natural radius of the attractor, RA. The final statistic is then the ratio of false nearest strand 
pairs to the total number of strand pairs. 

To summarize briefly (see | 13] for details), the false nearest strand procedure is performed in this way: 
( l ) choose some time lag ¢ and embedding dimension d and emhed the scalar time series with this time delay 
in a (d + l)-dimensional space. This space is rotated and stretched to normalized principal components, so 
that the coordinates are now linearly decorrelated. (2) The trajectory in the new, rotated space is projected 
down to d dimensions by discarding the d + 1st coordinate. (3) In the d-dimensional space, search the nearest 
neighbors to all points, excluding those whose time index is closer than some decorrelation time, usually in the 
order of two times the autocorrelation time. (4) From this list of nearest neighbors establish the list of strand 
pairs. In function of the d + 1st coordinate decide for each strand pair if it is a true or false one. 
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We have also compared the ratio of false strands with that obtained by randomly shuffling the last comptmem. 
if ~h¢ sig.~ examined stems from a truly low-dimensional dynamics, the first ratio should decrease with higher 
embedding dimension (and finally go to zero for noise flee data) while the ratio of false strands with 
last component should remain at a high level axound 50%, independent of the embedding parmneters. W'gh 
reasonably clean low-dimensional data the difference between original data and shuffled last ~ shouM 
be visible by eye. This is why the 3uthors did not perform any supplementatT statistical evaluation of the straml 
ratios. For our data, the difference cannot be evaluated as easily. Therefore we added in our bnplmnek~agfm 
the obvious Monte Carlo simulation, performing numerous shufflings (at almost zero cost) and estimating the 
probabi!ity of linearly correlated noise by the statistics based on Gaussian distributkm equation (6) and the 
empirical Monte Carlo probability equation (7) as stated above. 

In this article we have favored the F'NS method over the s u n . a t e  construction for two main reasons. ~rs~, 
it does not require the time consuming search for nem'est r~-'ighbors for each surrogate which is done on|y once 
in the FNS method. Secondly, the surrogate construction procedure may introduce spurious artifacts (see for 
example [44]). 

2.1.3. Deterministic versus stochastic modeling 

The "deterministic vs stochastic" (DVS) method [7,5l consists of fitting a family of local linea" tmxlds to 
the data and analyzing their prediction accuracy in function of various pararaeters which determine the tumid 
class. The procedure evaluates the forecasting performmw.~ of models ranging from local linear, that is, globally 
non-lineax to global linear ones. Local linear models perform better on chaotic data than global lineax ones, data 
from linear correlated noisy devices axe better modeled by globally linear models. Data from low-dimcnsio~ 
noisy chaotic devices will show lowest for~asting errors with intcrmediated models. 

The system's state space is r e c o n s ~  ~y the method of time delay embedding to obtain wajectmy points 
as discussed above. One chooses test vectors .~i and fits affine models of the form 

.gj+T "~ fT(Xj) (8) 

to selected vectors out of a training set of NF trajectory points preceding the test vector in time. The model is 
then used to estimate a T step ahead prediction of the test point by 

Yc,+r :. f f  ( x i ) .  (9) 

We select the k nearest neighbors to the test vector in state space as basis of the fitting model. Modal 
parameters ai, i = 0 . . . . .  d are determined as to minimize the squared error of models, 

d-! 
x/~o+r = ~ anx j ( t ) -~  + ad , 1 = I . . . . .  k. ( [0) 

nffiO 

Since there are ( d +  !) parameters, the minimal k to solve this equation is k = d +  1. The solution is unique, 
if the matrix composed of the xt  is non-singular. This is rarely what we want, since we do not expect single 
data-points determine the future behavior of the trajectory via a linear model. A reasonable lower limit of k to 
have a fit is two times the mathematical minimum, that is k = 2(d + I).  

By varying the number of nearest neighbors used to build the model in the range of k = 2(d + 1 ) to k ffi N~- 
(that is, the whole fitting set), we sweep the whole model classes from the deterministic extreme (local linear 
models) to the stochastic extreme (global linear models). Notice that for k = N~ the fitted model is nothing 
but a linear autoregressive model of order d. 
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This procedure of model building is repeated for a large number Nr of test vectors, and the mean absolute 
forecasting error is computed, 

Ea(k) = ~ [~,+z - x,+rl ( I 1 ) 
/Vr all test vectors 

Plots of these error curves for different embedding dimensions d against the number of nearest neighbors, 
k, is called a DVS plot. If models near the deterministic extreme give the most accurate short-term forecasts, 
then we have strong evidence for low-dimensional chaotic behavior in the data. This can been seen in Fig. la 
where a DVS plot for the chaotic Lorenz system is shown. Once the sufficient embedding dimension (3) has 
been reached, the forecasting error decreases drastically for local linear models. Global linear (AR) models 
produce errors about 200 times higher. When we add 25% (RMS) white noise to the same data, we observe 
first a general .degradation of the forecasting (Fig. Ib). The errors go up from 0.002 for the noise-free data to 
0.31 with noise added, taken from the respective best models. The signature of the DVS plot is typical for a 
noisy observation of a low-dimensional chaotic system: we need more observations in order to "average out" 
the noise, but the local structure in reconstructed state space is still prevalent. Therefore, the best forecasting 
is obtained with intermediary model classes. Linearly correlated noise (Fig. lc) shows a further diminution of 
the forecasting precision, and best prediction at globally linear models. The data for this calculation has been 
ob~ned by phase-shuffling the noise-free Lorenz data, used for the two plots before. There is no structure in 
the reconstructed state space which could be exploited by the simple local linear models used. White noise 
(Fig. !d) shows the same signature as linearly correlated noise, but the predictability has been lost. The best 
forecast is the mean value itself, this is why the AR model of lowest order performs best here. 

2.2. Methods for the recording o f  time series 

We have applied the methods described above to local field potentials recorded from micro-electrodes placed 
in the lateral geniculate nucleus (LGN lamina AI) of mildly anesthetized cats and in the optic tectum of awake 
pigeons. For full details of the methods see [20,21]; we only summarize here some essential points. 

In the visual pathways of all vertebrates the retina connects to the brain via the optic nerve which follows 
two parallel and major routes: the so-called tecto-fugal and thalamo-fugal pathways. In mammals, the pathway 
with the largest number of connections is the latter one, connecting optic nerve axons to the thalamus, at the 
lateral geniculate nucleus (LGN). The second pathway goes to the superior colliculus, and both LGN and 
colliculus are reciprocally connote! with the visual cortex (see e.g. [52] ). In other vertebrates (such as fishes 
and birds) the largest pathway goes to the optic tectum (homologous to the colliculus of mammals, belonging 
to the tecto-fugal pathway) while the second pathway goes to several disperse points of the thalamic complex 
(see e.g. [51]). 

In our study we have chosen recordings from the two preferred connections from the retina: LGN in cats and 
rectum in pigeons. These structures are thus quite different anatomically, but in both cases there is evidence of 
a ver~ active modulation from retinal stimulation in the receptive fields of the neurons recorded with micro- 
electrodes. Tectal cells respond best to moving stimuli (in our c~se: light-bars), but only briefly; some thalamic 
cells, in contrast, may show strong, long lasting responses also to static stimuli. 

Further, in both cases an active sensory modulation evokes synchronous activity in pairs of neurons (or small 
groups of multi-site responses) which, although separated by significant distance (up to a few millimeters), 
they may nevertheless enter into very precise temporal synchrony in their electrical responses while the visual 
stirnulalion is present [20]. 
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By differential filtering, two types of electrical signals can be recmded from micro-ekctm¢~: spike activity 
(single or multi-unit) and field potentials. Spike activity can be detected by high-pass filtering of  the data in 

the range of 10 KHz, since they correspond to propagated action potentials of  brief (1 msec) duration. 

field potentials (LFP), in contrast, are continuous signals, obtained when filtering up to 100 Hz. Since we 

record from micro-electrodes, we record potentials only from a local population. It is not precisely known how 

LFPs are composed from the activities of  the neurons mound the electrode, but it is widely assumed to be a 
spatial average over sub.threshold and spike potentials. A spike-triggered average of the LFP ch:ady shows a 

functional connection between both. Since it is much more convenient to use the continuously sampled L ~  

instead of the discrete series of spikes, we have woAed here exclusively with L ~  as our source of  data. 

The time series studied here correspond, then, to pairs of neurons in either rectum m LGN where an LFP 

response is detected while a light stimulus is presented twice in front of the receptive field. There are two 
subsequent periods of response, and each trial is part of a sequence of ten repetitions which are individu~iy 

analyzed. 
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3. I. Neural responses from the thalamus 

3.1. !. General conditions for  aaalysis 

We have analyzed 5 sets of local field potential recordings from two electrodes in the lateral geniculate 
nucleus (LGN lamina AI)  of cats (see [21] for details). Each set comprises I0 trials of 10 seconds of 
continuous recording with a sampling frequency of I kHz. There are two experimental conditions: static flashes 
and moving light bars. For data sei: labeled SA and SB stimulation was produced by means of a static light 

bar, flashed over the receptive field. A trial comPrises two stimulations of 2 seconds duration each, preceded 

and followed by an interstimulus period of 2 seconds. Data sets labeled MA and MB were recorded with 

stimulation by a single moving light bar across the receptive field, moving forwards and then backwards in 
each trial. A third data set MM correspond to recordings with stimulations by two moving light bars. 

The methods of surrogate data and false nearest strands have been applied to overlapping segments of 2048 ms 

and 1000 ms length, respectively. To this end, we applied first a low-pass filter with a :atoff ( - 3  dB point) 

at 140 Hz to remove high-frequency noise. The filtering has been performed in Fourier domain 2 . Using this 
a-causal filtering should introduce only negligible side effects, as has been shown in numerical studies [ 19]. 
The search for non-linearities has been performed on overlapping segments, cut out from these, filtered time 
series. Each segment is then rescaled to have an approximately Gaussian amplitude distribution before the tests 
are applied. The time series have low power at frequencies below 5 Hz, so that the signals may be regarded 

approximately stationary within the segments chosen. 
After filtering, the first zero crossing of the auto-correlation function calculated for each of the segments 

falls around 15-20 ms (equals number of points) for each of the segments. There is very little variation of this 
characteristic time within the trials. We have chosen therefore the range of embedding time lags as 3 ms to 
18 ms in steps of 3 ms. The decorrelation time lbr the search of nearest neighbors is state space was set constant 

to 25 ms. The tested embedding dimensions are 1 to 8 in steps of 1. The two methods applied systematically 

over this range of embedding parameters return the respective statistics for each of these combinations. That is, 

a N(0, I ) distributed value Z in the case of the surrogate method, and directly an a-value in the case of the 

FNS method. 
We need to consider the problem of deriving inferences from replicated tests. Given some significance level 

of. say, 95%, we expect 5% of false positive results in these tests. Performing the same test n times evidently 
increases the absolute number of positive results, true as well as false, and a single statistic above the level of 

significance is therefore less reliable. To get around that problem, Kennel and Isabelle [ 14] proposed to raise 
the significance level accordingly such that the new threshold corresponds to fine,,, = olin. 

There is a difficulty with this approach in that we do not perform exactly the same test, but Jests with 

varied parmneters. In principle statistics for data from truly low-dimensional dynamics should be insensitive to 

changes in the embedding in a rather wide range of the parameters, so the assumption of "repeating the same 
test" is correct. But our data are less conclusive and we proceed therefore as follows: we count the number of 
times when the statistic reaches the significance level. We require at least 5% out of all repetitions in order to 
be classified significant. Again, for truly low-dimensional data this should give the same result. But it allows 

to detect trends in the experimental da~ even when they are not fully significant. In our case, we perform 
8 x 6 = 48 tests on each window. A significant non-linearity requires more than or equal ~ 3 positive results. 

-'To do ~.o. we u~ only 8192 points of the whole time ~ries, starting at I000 ms. 
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Tabk ! 
LGN sun, gale statistics: coent~ of segment~ with nmm than 0. 2, 4, 5 or 6 individual o~eclions of/4o at the 95% Ievel (vahJe Z < - [.65) 
amongst "all embedding-sets (48). Total number of segments per data set and electrode: 70. Last column: ~ !  coem of ~ {o~ of 
3360). Percentage values in parenthesis, muffed. 

#cts>0 #cls>2 #,~>4 #cts>5 #cTs>6 

NULL 63 (90) 32 (46) 9 (13) 4 (O) I ( I ) 172 (5) 

MA-! 66 (94) 46 (66) 24 (34) 17 (24) 12 (|7) 272 (8) 
MA-2 66 (94) 42 (60) 15 (21) 7 (I0) 3 (4) 2i6 (6) 

MB-I 67 (96) 57 (81) 28 (40) 19 (27) 12 (17) 296 (9) 
MB-2 63 (90) 34 (49)  1 ! (16)  4 (6)  I ( i ) 188 (6)  

SA-I 68 (97) 58 (83) 36 (51) 27 (39) 17 (24) 368 ( I | ) 
SA-2 61 (87) 34 (49) iO (14) 8 ( I I ) 4 (6) I90 (6) 

SB-I 66 (94) 35 (50) 15 (21) !0 (14) 8 ( I ! ) 220 (7) 
SB-2 62 (89) 33 (47) I ! (16) 7 (IO) 3 (4) I84 (5) 

MM-I 62 (89) 44 (63) 19 (27) 13 (19) !i (16) 247 (7) 
MM-2 63 (90) 40 (57) 13 (19) 8 (! !) 4 (6) 211 (6) 

In order to verify our strategy, we performed the same tests on a set of "null-trials", constructed by phase- 
scrambling the data of a "good" set (MA-I) before they enter the surrogate or FNS procedures. By this, we 

have an additional empirical criterion to compare our results. 

3.1.2. Results for  the surrogate method 
Table I reports the overall statistics on identified non-linearities in everlapping segments of 2048 ms length, 

where each trial has been cut into 7 overlapping segr~-~ents, giving 70 segments for each set and electrode. For 

each experimental sequence of 10 trials, we count the number of segments (out of 70) where the hypothesis 

of linearly correlated noise could be rejected at the 95% level, that is, a value of Z < -1.65. We r e p ~  

on the cases where H0 was rejected for more than 0, 2, 4, 5 and 6 amongst the 48 combinations of  differem 
embeddillg dimensions (1-8) and tin:e lags (3--18 ms in steps of 3 ms). We shall refer to one such combination 
of embedding dimension and time-lag a~ an embedding-set. The scores are listed in columns ! to 5. In the last 

column we list the total number of positive ~nbedding-sets (out of 70 x 48 - 3360). 

We expect 5% of false positives, that is, 168. Indeed, the null-test returns a total of 172 rejections (NULL 

row, last column), which fits well the theoretical value. Almost all segments for all data sets, true data as welt 
as scrambled data, contain at least one ~'nbedding-set where Ho could be rejected ( ~ 0 % ,  first column). At 
the theoretical significance level (required number > 2, column 2), we detect a rather high ratio of  significant 

non-linearities in the original data (more than 50%). Notice, however, that the counts in the case of the null-test 

are still very high (46%) and are only slightly different from the true data. The null-test actually fails to the 

required 5% level for segments to be considered significant with more than 5 counts (column 4 shows 6%; 5% 
out of 70 is 3.5 counts). At this level, there is a clear seperation between the true data and the null-test, on 
the one hand, and between the two electrodes, on the other. Electrode one still counts an enhanced number of  
significant segments (20-40%), while electrode two shows sensibly less. 

in summary, the data clearly displays segments with significant non-linearities. If they stem from a low- 

dimensional chaotic process, however, they should be insensitive to changes in the embedding parameters in a 
rather wide range. This is certainly not the case for the present da_!a: 

In Fig. 2 (upper row) we plot cumulative counts for individual rejections at Z < -1.65 for the ten trials of 
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Fig. 2. ( t o p )  LGN surrogate cumulalive statistics. Results given only for set SA as representative example of all data sets. Plotted are 

counts of rejections at the individual 95% level (Z  < - 1.653 Left: electrode 1, right: electrode 2. The high number of counts in set SA-I 

around 1600 ms is linked to a highly regular, long lasting oscillation which starts before the stimulation. Stimulation periods are indicated 

by t h e  bars near d'm x-axis. 
(boltom) Same dala as above with the reduced statistics for the sunogate method. BoRed are counts of segments, where the He of  

correlated n o i ~  could be rejected more than 3 times (dotted line) and more than 5 times (continuous line). 

data-set SA against time. This is the set which shows the clearest modulation of the occurrence of non-linearities 

as a function of time. The graphs for the other sets (not shown) have a tendency to be almost constant a', a 

level of 30-40 rejections per time slot. 
Fig. 2 (bottom row) displays zhe results for the same data set, but this time we show the number of segments 

(out of ten) per time slot, where He could be rejected at the individual 95% level (Z < -1.65) for more than 3 

and 5 embedding-sets, respective!y. The number of significant non-linearities drops drastically when requesting 

more than the 3 counts that are theoretically necessary. In contrast, the tendency for a coincidence ~tw.een 
emergence of non-!i..~..z,~dties ~nd stimulation is enhanced in this presenta!ion. 

3. !.3. gesults for false nearest strands 
Table 2 reports the overall statistics on occurrences of non-linearities as detected with the FNS method 

applied to overlapping sef:.;aents of 1000 ms length, with 18 segments cut from each trial making a total of 
]800 segments analyzed. As in Table I, the first row reports the results on the null-data set. This test reveals an 
empirical value of false; positives of only 1.3% of the total number of embedding-sets tested (P~tc last column; 
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Table 2 
LGN FNS statistics: counts of ~gment~ with more Ihan 0-4 individual ~jections of Ha at Ihe 95% level. Valees are based ou the Mm~ 
Carlo probability PMc (percentage values in pe~-nth¢~, mended). Last two columns: total number of rejeOim~ far ~ ~ P~  
and Gau.qsian Pc probability. The resu~ are of the same order. 

#cls>0 ~ls> I #cls>2 #cts>3 #cts>4 P~c Pc 

NULL 78 (43) 25 (14) 8 (4) 2 (!) ! (1) |14 tog 

MA-I 87 (48) 33 (18) 10 (6) 4 (2) I (!) t35 I|6 
MA-2 87 (48) 32 (18) 13 (7) 5 (3) I (I) |38 |06 

MB-I 77 (43) 25 (14) 7 (4) 3 (2) I ( I )  i !6  94 
MB-2 94 (52) 44 (24) 18 (10) 4 (2) ! (I) 163 |39 

SA-I 79 (44) 32 (18) 15 ($) 6 (3) 6 (3) I59 132 
SA-2 84 (47) 31 (17) 9 (5) 4 (2) 2 ( I )  134 I n  

SB-I 89 (49) 39 (22) 19 (11) 4 (2) i ( ! )  152 132 
SB-2 95 (53) 3g (21) 15 (8) 2 (I) 0 (0) 150 128 

MM-I 87 (48) 34 (19) 15 (8) 6 (3) I (!) 143 125 
MM-2 96 (53) 32 (18) 7 (4) 0 (0) 0 (0) 135 I12 

114/( 180 × 48) : 1.3%). This test is therefore more severe that the surrogate test in the previous secuon, in 
contrast, the theoretical rejection level for segments (more than two rejections) corresponds to the observed 

value: 5% out of 180 is 9; the null-test finds 8 (column 3). We also find here that real rlma and null-set show 
a similar number of segn~nts with at least one rejection (around 44%, column ! ). This percent is almo~.t half 
as that for the surrogate test. 

While about 7% of all segments have been recognized as non-linear at the theoretical significance level 
(more than 2 counts, column 3), this number decreases drastically when demanding more positive counts titan 

theoretically necessary. We find a persistent non-linearity for the trial series SA- 1, which does not change much 

with higher number of positive counts. This persistency is linked to a very regular, long-lasting o s c i | ~  
in one of the trials. The superior number of non-linearities in electrode 1 as compared to electrode 2 is less 
pronounced here or even reversed (sets MA and biB). 

The counts presented here are based on the Monte Carlo statistics (Eq. (7)). Counts based on the assumption 

of a Gaussian distribution are very similar to these. We only report here the total number of rejections (klst 

column in Table 2, PG) as compared to those found by applying the Monte Carlo statistics (last colunm, Pro"). 
The FNS method provides us also with an absolute statistic, the ratio of false nearesl strands itself. ~ ,  

a "good" embedding would show no self-crossings of trajectories in the reconstructed phase-space and therefore 
the ratio of false nearest strands should go to zero for data from deterministic dynamics with s u ~ y  low 

dimension and sufficiently high-dimensional embedding space. We selected the ~ t s  where Ho could be 

rejected individually for 3 different embedding-sets at least, and looked at the absolute FNS ratio. The 
are in Table 3. Coiumn 1 iists the minimal FNS ratio f o ~  for the selected segments, the second column repo~ 
the corresponding FNS rgio with shuffled last component (mean over 39 realizations, see Section 2.1.2). The 
other columns indicate how often a F2qS ratio of less than a certain percent has been found, given that 
expected value for correlated noise is around 50%. Although some FNS ratios under 50% are four, t, they 
are always far above (40%) the approximately 5% of false strands which the authors of the method jml~: 
significant for deterministic dynamics, based on their experience. The last column gives tP~ total number c4" 
selected embedding-sets. 

In Fig. 3 (upper row) we plot, as before, the cumulative results for the FNS statistics (set SA). In geneS, 
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Table 3 
LGN: FNS rat:ms. ~ l  cole,,rm: the least F'NS r~dio (in %) found in the segments selected as &',scribed. The emlx~ding of a deterministic 
~e.~_~,3ry s,",o~ki give m~l more than 5% of false nearest strands. Sccouzl coluum: the corresl~+nding mean FNS ratio with shuffled last 
C O - - h i .  The ofl~er c~umns ~port how often a FNS ratio of less than 40% ..... 44% has been found. Last column: tolai number of 
cmbeddi~g-~ts ~lected. 

least shuffled <40% <42% <44% total 

MA-! 42% 50% 0 0 3 15 
MA-2 43% 49% 0 0 2 15 

M B - ! 42% 49% 0 2 4 16 
MB-2 39% 50% i 2 7 25 

SA-I 40% 45% I 5 19 36 
SA-2 41% 46% 0 2 8 20 

SB- I 43% 47% 0 0 3 26 
SB..2 43% 47% 0 0 4 19 

MM-I 42% 48% 0 2 5 16 
MM-2 42% 48% 0 0 7 12 

there is a number of data sets where one does not see any correspondence between non-linearity and stimulation 

Best cases include the backwards direction of moving bars, and the double moving stimulus (MM). The bottom 

row in Fig. 3 displays the. number of ~gments (out of ten) for each time slot, where H0 could be rejected 

more than 2 and 3 times, respectively, Very few segments are accepted as non-linear, and tr~e relationship to 
stimulation is not systematic. 

3.1.4. DVS results" 

The DVS method has been applied to all those segments which had more than two positive identifications of 

non-linearity with the FNS method. First, we search for a total of 104 segments the embedding-sets, where the 

null hypothesis of linearly correlated noise has been rejected at the 5% level (not more than one embedding-set 
for each dimension, yielding 200 embedding-sets that have been tested). Then we select each of these particular 

embedding-sets to build a series of local linear models, varying the number of nearest neighbors from two times 

the embedding dimension to all fitting vectors in 20 steps (such that the number of nearest neighbors increases 

exponentially). The data segments having 1000 points, we perform the test on the last 400 points, taking the 
preceding 600 points (excluding those closer in time than the first zero crossing of the autocorrelation function) 

as fitting set. The forecasting performance has been evaluated for predictions of 3, 6, 9, and 12 data-points 
-ahead. All segments tested had the signature of high-dimensional systems or linearly correlated noise. In no 

instance did we find evidence of low-dimensionality by this method. 

3.2. Neural responses form the optic tectum 

3.2. I. General conditions for analysis 

We choose two sets of recordings on two micro-electrodes in the optic rectum of awake pigeons. Each set 

comprises ten trials of four seconds of recordings at a .sampling frequency of 5000 Hz. Stimulation is by a 

moving fight bar over the receptive fields, forwards and backwards in each trial. The neural responses are 
much more transient than those of the mildly anesthetized cat. This is likely due to the characteristics of tectal 
neurons, and to the fact of experimenting with a fully behaving animal. 
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Fig. 3. ( top)  LGN FNS cumulative r~'su]ts. Same conventions as in Fig. 2; segmnt'~ of  1000 ms lenglh. 

(boHom) Same data as in Fig. 2, reduced ~ for I N S  n~'thod. Plowed we the homier  of  ~gmems  for each time slot, where d i e / ~  
could be rejected more than 2 t ings  (dotted line) and mine thaa 3 times (coa t iHous  fine~. 

Set A of the data has been recorded fror.l very closely spaced electrodes at the surface of the tectem 
(electrode distance: 0.3 mm, ~ :  0 #m).  The electrodes for set B had a larger separ~ion ~ record from 
deeper layers (electrode distance: I ram, depth: 190 #m). The light bar in forward direction passes at recording 
time 10O0 ms, and backwards at 2500 ms. Stimulus c o n d i ~ s  are t ~  same for both sets of trials. The 
response as revealed by the spike activity is almost immediate, starting at time 1050 ms for all ekx-'u'odes, and 
lasting around 200-300 ms. While in the case of the cat the experimental s~up and the natme of the data 
allowed for data segments of ! to 2 seconds (for the que~tlon of reasonable cognitive time scales, see below) 
segments that long are not per)sible in the case of the rectum, and we thus choose segrl]ents of 400 ms ~ g ~  

The data are highly oversampled; the original recordings have a high percentage of stri~ly equal p~'s  of 
successive samples. We can therefore reduce the number of data-points in order to reduce ~ effort 
without affecting the information contents. We have down-smnpled the ~ by a factor of two, obtaining eme 
new point from the mean of two successive points. The effective sampling frequen~ is new 2500 Hz, ~1! very 
high. Tnis leads to a high risk of artifacts for the sunogate method, which is not the case for the FNS method. 
As discussed above (Section 2.1.2) we thus decided net to analyze the pigeon rectum data with the ~m~)gaie 
method. In contrast, we have studied the first-differenced data 3 since this considerably enhances s t a l ~ t y .  

3 Each point is calculated as the difference of  two succeeding points: ~ = xr+t - xr. 
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Table 4 
Tcctum F'NS sx~stics: counts of scgnk-,ms with mo~ than O. 3, 7, or 10 individual rejections of Ho at the 95% level (petcemag¢ valm.~ 
in ix~cahhes~ round~). The lasl two columns list the total number of rejections (out of 14720), the left column based on Monte Carlo 
F r c ~ / ~  the r/gl~ colunm based on the assumption of a Gaussian ~ of the surrogate statistics. 

#cts>0 #cts>3 #cts>7 #cts> 10 Pro: Po 

Nell 182 (79) 59 (26) 14 (6) 4 (2) 577 506 

A1 179 (78) 77 (33) 20 (9) 9 (4) 707 636 
A2 187 (81) 77 (33) 25 ( I I) 8 (3) 776 715 
B1 188 (82) 82 (36) 28 (12) ! ! (5) 770 677 
B2 205 (89) !01 (44) 35 (15) 14 (6) 903 807 

This was no~ necessary for the more stationary cat LGN data. 

Evidence for the non-g~ionarity was clear from the high variability of the first zero crossing of the auto- 
correlation function as compared to the case of the LGN. For most segments the first zero crossing iics between 

2{] and 30 points (8-!2 ms), some however going up to 60-90 points (24-36 ms). We choose therefc~'¢ 

embedding tim¢-iags of 4 to 32 points in steps of 4 points for ¢mhedding dimensions I to 8. The zero-crossings 
for first-differenced data (aftcr down-sampling by 2) lie betw¢en 9 and 12 points; very few segments had their 
first crossing at up to 16 points. Time lags in this case has been chosen as 2 to 12 points, in steps of 2 points. 

3.2.2. Results for  false nearest strands 
FNS method has been applied to data segments of 400 ms ( 1000 points) length; ~.ach trial has been cut 

in 23 overlapping segamnts. As before, Table 4 lists the number of segments for the four sets of trials, where 
individually the null hypothesis of correlated noise has been rejected more often than O, 3, 7 or 10 fi~cs out of 

all 64 embedding-sets. The percentage values (in parenthesis) are calculated on a total number of 230 segn~."n., ts 

per set. The last two columns lists the total number of rejections (out of 230 x 64 = 14720) for counts based 

on Monte Carlo Statistics (Pu t )  and on a Ganssian approximation (Pc;). The first row again reports the same 
results for a series of nuli-dah~ created from set B I by phase-randomizing each segment before it enters the 
test. The observed count of false positives on the total is 3.9% (PMc, 577/14720). 

With a significance level of 95% for each test individually, and 64 different embedding-sets per window 

t~ed,  we requir'.. "I least 3 positives (5% of 64) to reject the null hypothesis for that data segn~nt. However, 
~his required 5% level in the null-test is only reached for more than 7 counts (column 3). Tbe number of 
segments with more than the formally necessary number of individual rejections decreases less markedly than 
in the c~ase of tim ~.alamus, leaving us with around 10-15% of all segments at the observed 95% level. 

If we consider row the ratio of false nearest strands, we find a more convincing result than in th¢ case of the 

cat. As before, .~e selected the segments wbere H0 could be rejected individually for 5 different ¢mbedding-sets 

al hast, and looked at the absolute FlqS ratio. The results listed in Table 5 show that we are still far from t ~  
5% for deterministic dynamics, but the best false nearest strand ratios decrease now down to 35% and there is 
a sizable number of segments between 36% and 40%. 

We also applied the FNS calculation to the first differenced data as shown in Tables 6 and 7, which 

should b¢ compared to Tables 4 and 5. Since we performed th¢ test on only 48 different embedding-sets, the 

significance level is reached at more than 2 rejections, theoretically, but more than 3 rejections arc actually 
required (column 3). The absolute FlqS ratios of the first differenced data are worse than in the case of the 
raw dam. This is t~ be expected, since first differencing augments noise. However, it is useful to do this 
calculation to check against the hypothesis that non-linearities arise only because of non-stationarity. Also, for 
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Table 5 
Tectum: FNS ratios. As in Table 3. First colunm: the least FNS ratio (in %) found in the segng~ select~ as ~ .  Sef.o~ c~,ms: 
mean ratio of faJsc strmds wilh s l ' ~  last cornlmnem for this window. The odL, r colunms ~ ~ ~ a ~ S  ~ ~ ~ ~ 
36% ..... 44% has been fo.~, Last column: total of emlgdlding-sm r~muidenM. 

..,Imflled <36% <38% <40% <42% <~% 

AI 35% 48% I $ 19 43 109 223 
A2 36% 46% 0 6 19 51 133 237 
BI 35% 48% I 6 20 65 133 254 
B2 36% 48% 0 8 29 79 181 32! 

Table 6 
Tectum INS .~tistics: first differenced data. Compare to Table 4. 

#~>0 #~>2 #cts>3 #c~s>5 PMc PG 

Null 134 (58) 26 (11) 12 (5) 2 (!) 248 200 

AI 172 (75) 57 (25) 33 (14) 10 (4) 399 334 
A2 179 (78) 50 (22) 26 ( I I ) 6 (3) 383 312 
BI 161 (70) 60 (26) 42 (18) 15 (7) 447 40t 
B2 159 (69) 49 (21) 20 (9) 2 (I) 333 2~ 

Table 7 
Tcctum: Fr~S ratios, tim differenced data. Congme to Table 5. 

least mean <38% <40% <42% <44% and 

At 40% 48% 0 2 9 28 46 
A2 42% 49% 0 0 0 l I 42 
BI 39% 46% 0 I 6 34 91 
B2 40% 48% 0 0 2 8 18 

truly low-dimensional dynamics first differencing should not change the results [29]. 
Fig. 4 (top row) shows the cumulative results based on the Monte Carlo estimator of the F'H$ st~stics 

aghast time as in Fig. 3 for one of the four sets analyzed. The left column represents the results obtained from 
the raw data, the right column those of the first differenced data. This set (BI) shows enhanced occunence ¢f 
non-linearifies during the two stimulation periods (indicated by the horizontal bar) for both raw data and 
differenced data. The results of the other sets ace less conclusive. 

Looking at the reduced statistic, that is, counts of segments where H0 could be rejected more than 7 a,d 

9 times for the raw data (64 individual tests) and mare than 3 and 5 times for the first differenced data (48 

embedding-sets tested), the result for ~ BI is confirmed (Fig. 4, bottom row). The dashed lines reweseat 
the less demanding statistics (7 and 3 positives requested, respectively), and the coutinuoes line repre'~,nts the 
more stringent statistics (9 and 5 positives requested, respectively). Clearly, the non-linearity is relatively t ab~  
since few survive this increase in stringency, 

Fig. 5 shows the counts of positive embedding-sets over time for all trials of the most pomising set, BI. 

Again, the left column s ~ d s  for the taw data, the rilght column for the first differenced data. Each line draws 
the number of embedding-sets leading to a rejection of H0. The step height cogrespouds to 15 counts, The:e age 
large v~ations from trial to tria!: compare for example, trial 3 and trial 7, left column. While the cunmlative 
results show an enhanced number of non-linearifies &a'ing stimulation, the individual trials ate less conclusive. 
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Fig. 4. (lop) Tectum FNS cumulative results: left column, original data, right column, first differenced data. Shown here only n~ults from 
dma ~ t  BI. Horizonial axis: time. Vertical axis: counts of individual llje~iions of Ho. (bottom) Tcctum FNS reduced slmis6cs. Same 
conven6ons as in Fig. 3 for the same d~a presented in the top row. Vertical axis: number of segments (out of ten) wbet¢ Ho could be 
~jcc~d for mo¢¢ than 7 and 9 diffe~em en~eddings (original data) and more than 3 and 5 embe~ings (first differenced dala). 

Figs 6 and 7 show in greater detail two trials, trial 5 and trial 7 of set BI. The figures include the original 
daia (field potential and spike activity), the FNS counts for the original data, the first differenced data, and the 
FNS counts for the first dilTerenc~d data. 

In trial 5 the neural oscillation arising after stimulation is clearly seen, even during the second stimulatioi, 
where the spike activity is less pronounced. The non-linearity statistics follows roughly the stimulation perils.  
In contrast, trial 7 shows less clear response to the stimulation, but a comparalively large peak in the FNS 
simistics at time 2600 ms and 3400 ms. Obviously, there is no robust and simple corr~pondenc¢ between 
stimulation, cell response and occurrence of non-linearity in these data. 

3.2.3. DVS 

We applied the DVS method on data segments, where the null of linearly correlated noise has been rejected 
for m least 5 different embedding-sets. As in the case of the inalamus, we search in the tables of FNS ratios those 
embedding-sets, where the null has been rejected (maximally one for each embedding dimension). A total of 
]035 embedding-sets on 248 data segments has been tested. None of the tests gave support to the hypothesis of 
low-dimensional dynamics: all DVS plots show the same signature charactmstic for high-dimensional dynamics. 
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I 5 cognls. 

4 . ~  

4.1. The framework 

The brain is a distributed dynamical system, comprising biii~ons of in~crconnc'cted nem'ons, subject to constant 
sensori-motor coupling and producing a number of eadogeno~ rhythms and state transitions. It seems muca- 
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response. 

sonab|e to seek for a global, low-dimensional deterministic dynamics in such a situation. We have to clarify 
here what we mean by low-dimensional. If the brain dynamics is confined for some brief time to an attractor 
of, say+ 0imension 100, we certainly may call this event low-dimensional, compared to the enormous number of 
degrees of freedom the complete system possesses. But for the experimentalist this "low" dimensional behavior 
is not distinguishable from a infinite dimensional one. 

The question is not whether the brain is a non-linear system or not, we assume that it definitively is. The 
question we altempt to answer is whether we can see this non-linearity in our recordings and under wb.at 
co,,~litions, and, further, if we are able to characterize it. In other words, we ask whether the application of 
non-linear methods is in principle able to provide us with characterizations which are not available through 
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much simpler and less errorpronc linear statistics. Accordingly, our a ~  here seeks to "reduce" in some 
way the circumference of the recording site in taking only/oca/recordings in the hope to ~ a subsys~m 
and to study its dynamics. In addition, we selected the type of signals to be used so as to maximize the 
that they correspond to a cognitive task. Thus we selected visual discrimination responses in visual pathv~rjs 
linked to synchronous neuronal populations. We have a precise knowledge about the onset ami duration of the 
stimulations, as well as the immediate cell responses. 

We arc now in the position to say that our strategy has been fruitful in that we could submit our time ~ 
detailed statistical scrutiny and come up with rcliable ~mswers. As a whole, it can be said tha~ there is evidence 
for non-linearities in the LFP recordings we have examined. When they appear, they do seem ofr~,u 
as expected, to the onset of the neuronal synchrony that accmnpan~ a visual r e s l x ~ .  It mus~ also be said 
that electrical traces obtained under similar conditions did not always give consistent rcsm~ and that ~ traces 
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of non-iinearities were relativdy fragile when tested against stringent criteria. 
We have observed not one. case which displays low-dimensionality. We are led to the conclusion that methods 

designed to c ~haracterize low-dimensional chaotic systems, like dimension analysis or estimation of Lyapunov 
exponents, are not suited for the analysis of these data. These methods, however, may provide help in the design 
of empirical tools to uncover further properties of these data. 

4.2. Why not more non-linearities ? 

Why didn't we find, as one might expect under these ideal conditions, robust traces of non-linearity? A 
fi~t step to answer this question is to notice the discrepancy between the time scales where we expect some 
coherent dynamics to underly a cognitive task, and the time scales we are forced to use due to the strictures of 
the analysis procedures. Microscopic cognitive events such as visual discrimination happen on a time scale of 
around 100-300 ms [48]. The frequencies in the signal are in the range of 5-80 Hz, with the maximal power 
usually attained around I0 Hz and sometimes around 30 Hz. Reasonable time segments for non-linear analysis 
methods require at least, say, 5 cycles of the lowest frequency, or 500-1000 ms. In other words, we do not 

expect a stable dynamics over the time necessar~ to collect sufficient information about the supposed attractor, 
and this may well be the cause of its elusive character in our results for the tools at our disposal. 

It could be argued that cognitive relevant activity is mainly reflected in higher frequency bands, and declare 
the lower frequencies to be extra weight in this regard. We could thus try to pursue a search for non-linear 
structure in higher frequency bands only, and thus use shorter time ~ries. But how can one reliably eliminate 
the low-frequency "trends" without introducing more artifacts than we wish to discard? One might be tempted 
to propose adaptive filtering techniques. This, however, is a difficult job, all the more so that there is little 
deta/led knowledge about "first principles" on inner mechanism producing the observed frequencies. 

Finally, it is very likely that despite of the control of behavior and the localized nature of the recording sites, 
the neural dynamics is still too high-dimensional m be seen by a few electrodes. 

4.3. Possibilities for  future improvements 

We have exploited to the best of available techniques a reliable search for non-linear components in single 
electrode recordings. It has to be emphasized that there are no comparable studies in the literature to date. 
We have found severa| possibilities to erroneously classify artifactual non-linearities. While we didn't work on 
noise reduction methods, we still think our findings relevant: our question was a first order one and since we 
didn't find any really robust and stable non-linearities, more sophisticated state-space reconstruction techniques 
should be looked at with skepticism. 

What could we do to improve our methods'?. It is obvious that the brain is an inhomogeneous, spatially 
extende,! system, and that we get only scarce information from it when looking only at two electrodes. The 
obvious alternative is to record from multiple sites, which is known to be a technically laborious neurobiological 
problem. Further, multivariate non-linear data analysis is far from having reached the state of a standard tool. 
Today, we simply do not know how to fully exploit multivariate data in a dynamical systems framework. 
Such basic questions as to whether (1) the recordings on the different electrodes are truly recording new 
(independent) information, and (2) if the electrodes are recording from the same dynamical subsystem, do 
not have a satisfying answer. 

State-space reconstruction from spatio-temporal signals is still in infancy: to our knowledge there are no 
results beyond either tilae-lag reconstruction from scalar time series, or taking multiple sources as basis for 
the reconstruction space. We have applied this latter approach to obtain global EEG indicators of pathological 
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conditions with some success, see [28]. But what is needed is a combination of both reconsmgtion a : c t m ~  
in order to exploit the dynamical history at each point plus the combined activity together, as in the reconsum:tL~n 
into a mmrix state-space proposed by [ 1 ]. 

Besides the question of more data, we emphasize the need for better data. That is, we need exlreme~ 
data, much cleaner than what is obtained today by the COmlgtent neurophysiologist who does mx co¢[rot~ 
these issues. Any known noise sources mu.~ be minimized I~,%re the recording is done. For instance, power 
line noise might be tolerable within the linear framework, since it is easy to identify spurious f r ~  which 
can be filtered with classical tools. In our Thalamus data we were forced to compromise by f i l t ~  a pea~ of 
150 Hz noise which fortunately is largely distant from the range of physiological significance. Bm in gen<n~, 
in non-linear dam analysis there are no a priori unimportant frequencies and no intrusions should be tolerated. 
All known filter techniques do more harm than good in t~is respect. This highlights the need for a kind of 
neurophysiology that conducts experiments with the consuaints of such data analysis in mind. 

In the long run, obviously, precise techniques for char'~terizing high-dimension',d chaos are going to be 
necessary for significant ",dvances in this area. Until then, we probably have to content ourselves with less 
ambitious methods, which are less demanding in data quality and quantity. We Pave in mind for exampi¢ 
spectral estimations of higher order, which provide the first steps beyond linear analysis and therefore nine 
insight in the time series' properties, but are still manageable problems with analytical results. 
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