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Abstract We show that coherent oscillations among
neighboring ganglion cells in a retinal model encode
global topological properties, such as size, that cannot be
deduced unambiguously from their local, time-averaged
firing rates. Whereas ganglion cells may fire similar num-
bers of spikes in response to both small and large spots,
only large spots evoke coherent high frequency oscilla-
tions, potentially allowing downstream neurons to infer
global stimulus properties from their local afferents. To
determine whether such information might be extracted
over physiologically realistic spatial and temporal scales,
we analyzed artificial spike trains whose oscillatory cor-
relations were similar to those measured experimentally.
Oscillatory power in the upper gamma band, extracted
on single-trials from multi-unit spike trains, supported
good to excellent size discrimination between small and
large spots, with performance improving as the num-
ber of cells and/or duration of the analysis window was
increased. By using Poisson distributed spikes to
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normalize the firing rate across stimulus conditions, we
further found that coincidence detection, or synchrony,
yielded substantially poorer performance on identical
size discrimination tasks. To determine whether size
encoding depended on contiguity independent of object
shape, we examined the total oscillatory activity across
the entire model retina in response to random binary
images. As the ON-pixel probability crossed the perco-
lation threshold, which marks the sudden emergence of
large connected clusters, the total gamma-band activity
exhibited a sharp transition, a phenomena that may be
experimentally observable. Finally, a reanalysis of previ-
ously published oscillatory responses from cat ganglion
cells revealed size encoding consistent with that pre-
dicted by the retinal model.

1 Introduction

High frequency oscillations have been observed in a
variety of vertebrate retinas, including cat (Laufer and
Verzeano 1967; Neuenschwander et al. 1999; Neuensch-
wander and Singer 1996; Steinberg 1966), rabbit (Ariel
et al. 1983), mudpuppy (Wachtmeister and Dowling
1978), frog (Ishikane et al. 2005, 1999), macaque
(Frishman et al. 2000) and human (De Carli et al. 2001;
Wachtmeister 1998). Nonetheless, the role of coherent
high frequency oscillations in visual processing remains
unresolved. Here, we used computer models to inves-
tigate whether coherent oscillations among neighbor-
ing retinal ganglion cells could encode global stimulus
properties, such as size, that cannot be unambiguously
inferred from their local, time-averaged firing rates.
Ganglion cell firing rates typically depend both on lumi-
nance contrast and on stimulus size, increasing for spot
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diameters smaller than the receptive field center and
decreasing thereafter due to surround inhibition. Be-
cause it is impossible, based entirely on local informa-
tion, to disentangle the effects of global stimulus topol-
ogy from the effects of luminance contrast, the size of
a stimulus cannot be unambiguously determined from
the mean firing rates of one or a few neighboring cells.
Coherent high frequency oscillations, on the other hand,
are not evoked by small spots (Ariel et al. 1983; Ishikane
et al. 1999; Neuenschwander et al. 1999) and thus are not
intrinsically confounded by luminance contrast.

We propose that the retina encodes visual informa-
tion in two complementary channels: while the average
firing rate among a small group of neighboring gan-
glion cells conveys local stimulus properties, such as
luminance contrast, their coherent oscillations convey
additional information about global stimulus properties,
such as size. To test this hypothesis, we asked whether
global topological information could be extracted from
the coherent oscillations among neighboring retinal gan-
glion cells upon single stimulus presentations lasting
no more than a few hundred msec, equivalent to typi-
cal inter-saccade intervals (Martinez-Conde et al. 2004).
The answer to this question both constrains and informs
the functional role of retinal oscillations. In order to
be behaviorally relevant, any information conveyed by
coherent oscillations must be accessible on physiological
time scales. Furthermore, spatial convergence at early
visual processing stages is rather low, being one to a few
at retina-LGN synapses (Usrey et al. 1999) and approxi-
mately 1:15 at LGN synapses onto layer IV simple cells if
ON and OFF inputs are considered separately (Alonso
et al. 2001). If global stimulus properties cannot be ex-
tracted from a relatively small number of neighboring
ganglion cells on single trials, then it is unlikely that
coherent oscillations convey such information to early
processing stages. Alternatively, by demonstrating that
retinal oscillations encode global topological informa-
tion that can, in principle, be extracted early in the vi-
sual processing hierarchy, we establish their potential
functional utility.

To investigate whether global stimulus properties
could be extracted from the coherent oscillations among
relatively small numbers of retinal ganglion cells on sin-
gle trials, we analyzed sets of artificial spike trains pro-
duced by a computer model of the inner retina
(Kenyon et al. 2003). Coherent oscillations are an emer-
gent property of large neural ensembles and thus can
be difficult to study using standard electrophysiological
techniques. Computational models can therefore pro-
vide a useful alternative for investigating the information
encoded by coherent oscillations among specific cell
types. The retinal model produced size-dependent

coherent oscillations similar to those measured exper-
imentally, as assessed by both single-trial as well as
trial-averaged multi-unit correlation functions and cor-
responding frequency spectra. A discrimination analysis
was used to classify the relative sizes of spot stimuli as
either “smaller” or “larger” on the basis of the oscilla-
tions present in short sections of multi-unit spike train
data, from 50 to 400 m s in duration and containing
between 1 and 16 model ganglion cells. Despite the pres-
ence of substantial single-trial variability, it was none-
theless possible to discriminate between large and small
spots on between 60 and 100% of stimulus trials, with
performance improving as the duration of the analy-
sis window was increased and/or as more neurons were
included in the multi-unit spike train. Thus, our results
suggest that information in the optic nerve may be multi-
plexed, with local stimulus properties, such as contrast,
encoded by the firing rates of individual neurons and
contextual information, such as whether a given gan-
glion cell is responding to a small isolated spot or to a
large connected object, encoded by coherent high fre-
quency oscillations.

To control for size-dependent changes in the mean fir-
ing rate, the above discrimination analysis was repeated
after adding Poisson distributed events to the individual
multi-unit records in order to normalize the average
number of spikes produced under different stimulus
conditions. Eliminating all size information from the
mean firing rate did not qualitatively reduce the ability
to distinguish between large and small spots based on
the strength of the coherent oscillations between neigh-
boring ganglion cells. In fact, by reducing the baseline
variability in the responses to small spots, rate normali-
zation actually led to slightly improved performance on
the size discrimination task. Thus, our results suggest
that coherent oscillations can encode global topologi-
cal information on single trials even when the average
power in the DC band is held constant. Employing the
same rate normalization technique, we found that size
discrimination based on coincidence detection, or syn-
chrony, was substantially worse than that mediated by
coherent oscillations, even though both tasks used the
same multi-unit spike records. Our results thus suggest
that single trial power spectra may convey more infor-
mation about global stimulus properties, such as size,
than does the absolute number of coincident inputs,
although our results say nothing about other informa-
tion processing roles for firing synchrony that have been
suggested (Meister and Berry 1999; Schnitzer and Mei-
ster 2003; Singer and Gray 1995).

We further investigated whether our results were crit-
ically dependent on the details of the retinal model, par-
ticularly the axon-mediated feedback used to reproduce
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the high frequency oscillations recorded from cat gan-
glion cells. Simply because the retinal model was able
to reproduce the trial-averaged correlations observed
experimentally does not necessarily mean that the sin-
gle-trial statistics were correct. For example, the sig-
nal-to-noise in the retinal model could have been sub-
stantially different from that present in the retina itself
and yet this discrepancy might have been obscured in
the process of averaging over multiple trials. We there-
fore generated a second set of artificial spike trains that
employed a very different mechanism for producing
realistic high frequency oscillations, namely, a common
modulatory input. Both sets of artificial spikes trains
supported approximately the same levels of perfor-
mance on the size discrimination task, suggesting that
the contextual information encoded by coherent high
frequency oscillations may be largely independent of
their mode of generation.

In addition, we investigated the degree to which the
retinal oscillations evoked by large contiguous objects
were independent of shape. Random binary images were
used to generate different sized clusters with highly vari-
able boundaries. Rather than analyzing the responses to
each cluster individually, we examined the output across
the entire retinal model for an analog of the “percola-
tion transition” in the set of input images. As the average
density of ON (or equivalently, OFF) pixels in a set of
random binary images approaches a critical value, called
the percolation threshold (Grimmett 1999), the average
size of a cluster of simply connected ON (or OFF) pixels
diverges, becoming commensurate with the scale of the
image itself. By measuring the total activity in the upper
gamma band across the entire model retina, we were
able to test the hypothesis that high frequency oscilla-
tions could be evoked by large connected objects of arbi-
trary shape. Consistent with this hypothesis, there was
a sharp transition in the total gamma activity near the
percolation threshold at which large connected clusters
first appear. These results suggest a novel experimental
strategy for testing some of the key predictions of the
retinal model.

Finally, we reanalyzed previously published multiunit
recordings from cat retinal ganglion cells that were stim-
ulated by several different spot sizes. Because the exper-
imental study did not identify individual cells, it was
not possible to determine what fraction of the recorded
neurons participated in the high frequency oscillatory
responses, nor was it possible to determine whether the
multi-unit data arose from a fixed set of neurons or,
alternatively, if separate cell populations were activated
by the different sized stimuli. In addition, the mean
firing rate declined by approximately a factor of two
over the course of the response, which may have further

obscured the information encoded by coherent oscilla-
tions. Despite such confounds, our reanalysis was clearly
consistent with the hypothesis that coherent high fre-
quency oscillations between neighboring retinal gan-
glion cells can provide fast, local encoding of global
stimulus properties.

Preliminary descriptions of the results reported here
have appeared previously in abstract form (Stephens
et al. 2003).

2 Methods

2.1 Retinal model

Artificial spike trains were generated using a semi-real-
istic model of the inner retina whose relationship to
anatomical and physiological data (Kenyon et al. 2003),
ability to accomplish rudimentary segmentations of both
artificial and naturalistic scenes (Kenyon et al. 2004a, c)
and ability to compensate for correlation-induced lim-
its on rate coded stimulus features, such as intensity
(Kenyon et al. 2004b), have been previously described.
Briefly, input to the model was conveyed by an ar-
ray of external currents proportional to the pixel-by-
pixel grayscale value of a two-dimensional image. These
external currents directly stimulated the model bipo-
lar cells and approximated their light-modulated syn-
aptic input from cone photoreceptors. The bipolar cells
produced excitatory postsynaptic potentials in both gan-
glion cells and amacrine cells according to a random pro-
cess (Freed 2000). The axon-bearing amacrine cells were
electrically coupled to neighboring ganglion cells and
to each other and made strong inhibitory connections
onto the surrounding ganglion cells and axon-bearing
amacrine cells (Fig. 1). This feedback circuit produced
robust, physiologically realistic oscillations in response
to large stimuli. When several ganglion cells were acti-
vated by a stimulus, they in turn activated neighboring
axon-bearing amacrine cells via gap junctions (Dacey
and Brace 1992; Jacoby et al. 1996; Vaney 1994). The
stimulated cells were then hyperpolarized by the
ensuing wave of axon-mediated inhibition, thus setting
up the next cycle of the oscillation. Spike generation
was modeled as a leaky integrate-and-fire process with
a membrane time constant of 5 m s, consistent with pub-
lished physiological data from cat alpha ganglion cells
(O’Brien et al. 2002). The model also contained local
non-spiking amacrine cells that generated randomly dis-
tributed inhibitory postsynaptic potentials that helped
both to make spontaneous firing asynchronous and to
increase the overall dynamic range, but were not oth-
erwise critical for generating oscillatory spike trains.
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Fig. 1 Schematic of the retinal feedback circuit. Only those
elements directly responsible for synchronous oscillations are de-
picted. A combination of local excitation via gap junctions (resis-
tors) and long-range inhibition via axon-bearing amacrine cells
(gray dotted lines and filled black circles) produced physiologi-
cally realistic size-dependent oscillations. The entire model con-
tained a 32 × 32 array of ganglion cells driven by a 64 × 64 array of
bipolar cells, with inhibitory feedback arising from a 64 × 64 array
of axon-bearing amacrine cells, only a few of which are shown.
Light stimuli were implemented by injecting currents directly into
bipolar cells

Finally, Poisson distributed events were added to the
spike trains generated by the network model so as to
increase the mean firing rate by 20% regardless of stim-
ulus size (these random events were added in lieu of,
not in combination with, the rate normalization process
described below). This procedure yielded correlations
that better matched published trial-averaged experi-
mental data, possibly because multi-unit spike trains
recorded from the cat retina may have included some
non-oscillatory cells.

A formal mathematical description of model is pre-
sented in Appendix A. The robustness of the simula-
tions with respect to both numerical and physiological
parameters (Kenyon et al. 2003) as well as an earlier lin-
ear version of the model (Kenyon and Marshak 1998),
have been presented previously.

2.2 Common input model

A second set of artificial spike trains were generated
under the alternative assumption that the spatiotem-
poral correlations between cat ganglion cells are due
to a common oscillatory input that uniformly modu-
lates the firing rates of all simultaneously recorded neu-
rons. Starting with a power spectrum containing a single
Gaussian peak, characterized by three parameters spec-
ifying the amplitude, width, and central frequency, we
transformed back to the time domain by randomly cho-
osing the phases of the individual Fourier components.
Parallel sets of artificial spike trains with realistic spa-
tial–temporal correlations were then constructed by

assuming an array of Poisson generators, where the
above time series was used to simultaneously modulate
their instantaneous firing rates. Further mathematical
details of the procedure are presented in Appendix B as
well as in previous studies (Kenyon et al. 2004b).

2.3 Correlation analysis

Correlations in the artificially generated spike trains
were computed from 200 m s epochs, which in the case
of the retinal circuit model were taken from the sus-
tained portion of the response after the firing activ-
ity had settled to a stable plateau level. Correlations
were computed separately between all distinct cell pairs
contributing to the multi-unit record and the individ-
ual cross-correlations then averaged to produce a single
multi-unit correlation function. All multi-unit correla-
tion functions were normalized relative to the expected
correlations due to chance. An amplitude of one thus
corresponded to a doubling in the number of correlated
events over the expected value at the corresponding de-
lay. The single-trial correlation functions were averaged
across all 200 independent stimulus trials to produce a
trial-averaged multi-unit correlation function. All cor-
relation functions used a bin width of 1 m s and were lag
corrected for edge effects arising from the finite length
of the spike train. Shift-predictors, which were generally
negligible, were not subtracted, as our hypothesis does
not depend on whether oscillations are phase-locked to
the stimulus onset.

2.4 Size discrimination

We assessed the ability to discriminate between small
and large stimuli based on the average spectral ampli-
tude in the upper gamma frequency band (either 65–100,
70–90 or 60–95 Hz, as indicated), extracted from short
segments of multi-unit spike train data on single trials.
Model spike train segments were 50–400 ms in duration,
contained from 1–16 neurons and for the retinal cir-
cuit model were always taken from the plateau portion
of the response, beginning at least 200 m s after stimu-
lus onset. To estimate the average spectral amplitude in
the upper gamma band, the multi-unit spike train was
Fourier transformed and the mean amplitude of the dis-
crete Fourier coefficients between the indicated limits
was computed. The individual Fourier coefficients were
then scaled by the total number of spikes, given by the
amplitude of the zero-frequency band, thus removing
the linear dependence on the mean firing rate. For spike
trains that were not rate-normalized (the rate normali-
zation procedure is described below), the average spec-
tral amplitude in the upper gamma band was expressed
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as a fraction of the mean baseline spectral amplitude,
defined as the average between 220 and 500 Hz, com-
puted on the same trial. This alternative scaling proce-
dure was necessary because the average power in the
upper gamma band exhibited a non-linear dependence
on the total number of spikes. Trial-to-trial fluctuations
became larger as the number of spikes decreased but the
amplitude could not drop below zero, thus creating a net
positive baseline shift when the firing rate was very low.
The average spectral amplitude in the upper gamma
band (gamma activity) was determined for each trial
and the results sorted into 11 equally spaced bins span-
ning the full range of the data. The binned, single-trial
gamma activity was then normalized as a probability dis-
tribution, yielding the percentage of trials on which the
single-trial gamma activity fell within a particular range.

Given the probability distributions of single-trial
gamma activity for each stimulus size, it was straight-
forward to estimate the percentage of trials on which
any given pair of stimulus sizes could be discriminated
based on the single-trial gamma activity alone. Spe-
cifically, the ability to discriminate two stimulus sizes
was inversely related to the degree of overlap between
the corresponding probability distributions (Duda et al.
2001). If the distributions of single-trial gamma activ-
ity overlapped completely, the maximal theoretical per-
formance on the size discrimination task would be no
better than chance (50% correct). On the other hand, if
the distributions of single-trial gamma activity were en-
tirely non-overlapping for a given pair of stimulus sizes,
the maximum theoretical performance on the discrimi-
nation task would be perfect (100% correct). Between
these two extremes, corresponding to distributions that
partially overlap, maximum theoretical performance on
the size discrimination task, P, expressed as a fraction
of trials correctly classified, is given by the following
formula:

P = 2 − Aoverlap

2
(1)

where Aoverlap denotes the total area of the overlap be-
tween the two distributions and the maximum value of
Aoverlap is normalized to one. Error bars on the esti-
mated values of P were determined by assuming the
number of trials to either side of the Bayes discrimina-
tor obeyed binomial statistics.

2.5 Rate normalization

To estimate the size information conveyed by the num-
ber of synchronous events on each trial, as opposed

to the information conveyed by coherent oscillations,
it was useful to first normalize the average firing rates
across stimulus conditions so that the baseline level of
coincident inputs remained constant. For the common
input model, the average firing rate was fixed a priori at
50 Hz for all spot sizes, so explicit rate normalization was
unnecessary. For the retinal circuit model, the average
firing rate depended on spot size, primarily because the
small spots did not completely cover the receptive field
centers of the recorded cells. To normalize the mean
response, we added independently generated Poisson
distributed spikes to each train so that the average firing
rate was always equal to 50 Hz independent of stimulus
size. A similar procedure was used to normalize the fir-
ing rates of the spike trains recorded experimentally, as
described below.

2.6 Physiological recordings

Data from previously reported experiments in the cat
retina were reanalyzed in order to quantify the infor-
mation relating to the global stimulus topology con-
veyed by high frequency oscillations in short sections of
multi-unit spike train data. As no new experiments were
conducted, and since a detailed description of the exper-
imental methods is available elsewhere (Neuenschwan-
der et al. 1999), only an abbreviated description of the
experimental procedure is provided here.

Intra-ocular recordings were made from anesthetized
and paralyzed cats in response to spots of various sizes,
presented at high contrast against a background illumi-
nation of ∼ 0.4 cdm−2. Each spot of a given size was
presented 20 times for a period of 3 s, although only
the first 2 s of the response were used in the follow-
ing analysis. For each spot size, the total spike record
across all trials was divided into 200 equally spaced, non-
overlapping segments, each 200 m s in length. For pur-
poses of this study, these 200 spike train segments were
treated as independent stimulus trials. Because single
units were not isolated in the experimental data, cor-
relations were computed directly from the multi-unit
spike train rather than between all distinct cell pairs.
Thus, unlike the correlations computed from artificially
generated spike trains, the correlations computed from
the cat data included the auto-correlation functions of
the individual cells. The rate normalization procedure,
when used, was modified so as to equalize the average
firing rates in each 200 m s epoch relative to the stimulus
onset, as well as with respect to spot size. In all other
aspects, the experimental and artificial spike trains were
processed identically.
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3 Results

3.1 Analysis of representative single-trials

The retinal circuit model (Fig. 1) was stimulated using
square spots covering an area equal to either 1 × 1, 4 × 4,
or 6 × 6 ganglion cells (sizes expressed as multiples of the
ganglion cell center-to-center distance, corresponding to
approximately 1◦–4◦ degrees of visual angle, intensity
was equal to 0.25 for all stimuli). Representative multi-
unit event trains, consisting of four model neurons taken
from a 2 × 2 array of neighboring ganglion cells located
at the center of the stimulus, were obtained in response
to three different spot sizes (Fig. 2a). Spikes generated
by the retinal circuit model, including the addition of
randomly distributed Poisson events that increased the
average firing rate by 20%, are shown in black. Rate nor-
malized spike trains, in which Poisson distributed events
were added to maintain the average firing rate at 50 Hz
regardless of spot size, are shown overlaid with the addi-
tional spikes drawn in light gray. Because the smallest
spot did not completely cover the receptive field centers
of the four recorded neurons, the average number of
spikes varied by approximately a factor of 3 as a func-
tion of stimulus size (black spikes only). Based purely
upon visual examination of the rate-normalized event
trains (gray + black spikes), it is difficult to distinguish
between the different spot sizes, although there is some
suggestion of greater periodicity in the responses to the
larger stimuli. The primary question we address in this
study is whether there is enough periodic structure in the
single-trial, multi-unit data recorded from a few neigh-
boring ganglion cells, even in the rate-normalized case,
to infer global stimulus properties, such as size.

Single-trial frequency spectra computed from a set
of representative non-rate-normalized multi-unit spike
trains (i.e. without gray spikes) reveal that as a function
of stimulus size there is a prominent increase, relative
to the surrounding baseline, in spectral amplitudes fall-
ing within the upper gamma band, roughly between 60
and 100 Hz (Fig. 3a). The magnitudes of the Fourier
coefficients computed from individual spike train seg-
ments were divided by the total number of events, given
by the amplitude at 0 Hz, or DC band. In response to
the largest spot, covering an array of 6 × 6 model gan-
glion cells, all three single-trial traces rose to a distinct
peak at approximately 85 Hz, although the exact loca-
tion varied from trial-to-trial. On the other hand, in re-
sponse to the smallest spot, whose diameter was equal to
only 1 ganglion cell center-to-center distance, there was
no evidence of a distinct spectral peak anywhere within

a

b

c

Fig. 2 Representative multi-unit spikes trains. Gray bars indi-
cate Poisson distributed events added to maintain the average
firing rate constant across stimulus conditions (trial-averaged fir-
ing rate of the original spikes trains indicated to upper right of
center). Spike trains were 200 m s in duration and stimuli were
maintained throughout the response. a–c Top row Three repre-
sentative responses to the largest applied stimulus (spot dimen-
sions indicated to upper left of center). Middle row Responses to
an intermediate sized spot. Bottom row Responses to the small-
est spot. Upon visual inspection, the rate-normalized spike trains
exhibit only subtle periodic structure as a function of increas-
ing stimulus size. a Retinal circuit model. Multi-unit spike trains
recorded from 2 × 2 array of model ganglion cells centered on
the applied stimulus. Data taken from the sustained portion of the
response after the firing rate had settled to a stable plateau level. b
Common input model. Each sequence contained 4 units. Param-
eters corresponding to large, med and small spots were chosen
to provide a reasonable match to experimentally measured size-
dependent correlations (see Fig. 6). c Cat. From left to right, spike
trains recorded 0.2, 1.0 and 2.0 s after stimulus onset. The mean
firing rate adapted over this period by approximately a factor of
two
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the upper gamma band. Single-trail frequency spectra
obtained in response to the small spot were noisier due
to the reduced number of spikes in a typical sequence.
These results suggest that by analyzing the gamma

� Fig. 3 Representative frequency spectra as a function of spot size.
Each trace was computed from a single non-rate-normalized spike
train, examples of which were shown in Fig. 2 (black events only).
Spot dimensions are indicated to upper left of each trace. Spectral
amplitudes expressed relative to the number of spikes (height of
DC band). a Retinal circuit model. For the small spot, increased
variability was due to the reduced number of events. b Common
input model. c Cat. In the responses to the small spot, variability
was larger for traces recorded at times later from stimulus onset.
Black, dark and light gray traces recorded 0.2, 1.0 and 2.0 s fol-
lowing stimulus onset, respectively. a–c An increase in spectral
amplitudes in the upper gamma band is clearly evident as a func-
tion of increasing spot size, suggesting that coherent oscillations
can encode topological information that is available on behav-
iorally relevant time scales. Vertical dotted lines denote the range
65–100 Hz

activity present in short sections of multi-unit data con-
taining only a few neighboring ganglion cells, it may be
possible to reliably infer global stimulus properties over
physiologically relevant time scales.

The size-dependent peaks in the single-trial frequency
spectra recorded from the retinal circuit model were evi-
dent in the trial-averaged responses as well (Fig. 4a). For
the largest spot, the peak amplitude in the trial-averaged
data was slightly more than double the average base-
line level, whether computed using the original (black
traces) or the rate-normalized spike trains (gray traces).
Importantly, there was no evidence of a peak in the
upper gamma band in response to the smallest stimulus,
although the rate normalization procedure did reduce
the baseline offset, a non-linear effect that may be attrib-
uted to the reduced variability in the single-trial traces
that diminished the influence of the amplitude cutoff at
zero. The rate normalization procedure did not much
affect the mean spectral amplitudes computed in re-
sponse to the two larger stimuli, as only relatively few
Poisson distributed spikes were added under these con-
ditions. However, there did appear to be a general reduc-
tion of total gamma activity in the trial-averaged
responses compared to the single trial traces, most likely
due to the intrinsic variability in the location of the peak
oscillation frequency, itself a consequence of the non-
linear nature of the retinal feedback circuit (Kenyon
et al. 2003).

Similar single-trial size discrimination was evident
in the multi-unit correlation functions computed from
representative spike sequences (Fig. 5a). Rate-normal-
ized spike trains were used for this analysis since it
was impractical to obtain single-trial correlation func-
tions when the total number of events was very small.
Although the individual traces were quite noisy, periodic
structure was still clearly evident in the responses to the
large spot, whereas no clear gamma activity was evi-
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Fig. 4 Trial-averaged frequency spectra as a function of spot size.
Same general organization as in Fig. 3. a–c A prominent peak in
the upper gamma band appears as spot size increases. Black traces
were computed using the original spike trains. Gray traces were
computed using the rate-normalized data. For both the retinal cir-
cuit model and the cat data, the rate normalization procedure pro-
duced a general reduction in all frequency components obtained
in response to the small spot but did not affect the overall shape
of the trial-average spectra. Rate-normalization also reduced the
size-dependent peaks computed from the cat data, by diluting
gamma activity relative to the DC band

dent in the single-trial correlations functions computed
in response the small spot. Consistent with the trend
suggested by the single-trial traces, the trial-averaged
multi-unit correlations functions were also strongly size
dependent (Fig. 6a), an effect that has been observed in
several species (Ariel et al. 1983; Ishikane et al. 1999;
Neuenschwander et al. 1999). However, the averaging
process seemed to reduce the magnitude of the oscilla-
tions from that present in the single trial traces, particu-
larly the height of the periodic side bands, an effect that
may be attributed to the slight misalignment of corre-
sponding maxima across trials. Despite such variations,
the strong size dependence visible in the single-trial
correlation functions suggest that global topological
information is likely to be available on behaviorally sig-
nificant spatial and temporal scales, in this case repre-
sented by spike train segments 200 m s in duration and
consisting of four neighboring cells.

Analogous results were obtained using an alternative
model based on common modulatory input, a method
for generating oscillatory spike trains that is fundamen-
tally different from, and largely complementary to, the
axon-mediated feedback employed in the retinal circuit
model. Upon casual inspection, representative multi-
unit spike trains generated by the common input model
exhibited only subtle differences in periodic structure as
a function of spot size, even though the instantaneous
firing rate was strongly modulated by physiologically
realistic coherent oscillations (Fig. 2b). As with the ret-
inal circuit model, the artificial spike trains generated
by the common input model contained four units. The
spike trains corresponding to the different stimulus sizes
have been labelled “small”, “med” and “large” to facili-
tate comparison. By adjusting the amplitudes and widths
of the gamma activity peaks in the corresponding fre-
quency spectra and then transforming back to the time
domain after assigning random phases to each frequency
component (see Methods), it was possible to produce a
reasonable fit to the size dependent correlations mea-
sured experimentally. Because the time-averaged firing
rate in the common input model was held constant at
50 Hz across all stimulus conditions, there was no need
for an additional rate normalization step (i.e. no gray
spikes).

As in the retinal circuit model, the single-trial fre-
quency spectra produced by common modulatory input
showed a clear increase in spectral amplitudes falling
within the upper gamma band as a function of increasing
stimulus size (Fig. 3b), an effect that was present in the
trial-averaged responses as well (Fig. 4b). One differ-
ence between the two models, however, was that the
total gamma activity appeared to be somewhat smaller
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Fig. 5 Single-trial correlation functions for different sized spots.
Same general organization as in Fig. 3. a–c Each trace computed
from a single rate-normalized spike train (e.g. black + gray events
in Fig. 2). Correlations were expressed as a fraction of the expected
level due to chance. Increases in oscillatory structure were clearly
evident as a function of increasing stimulus size. Coherent oscilla-
tions evoked by the largest spot size could persist over many tens
of m s, although corresponding maxima were often poorly aligned
across trials

in the single trial traces produced by common input, as
opposed to the retinal feedback circuit, although the
areas under their trial-averaged peaks were similar. A
possible explanation of this difference is that the trial-
to-trial variability in the location of the peak frequency

may have been greater in the retinal circuit model, as
the location of the peak frequency in the common in-
put model was held fixed for each stimulus condition.
The two models were nonetheless similar in that the
single-trial correlation functions produced by common
oscillatory input (Fig. 5b) again appeared to exhibit
larger periodic modulations than were present in the
trial-averaged results (Fig. 6b). Although the central
oscillation frequency was held fixed in the common input
model, the instantaneous phase of the underlying coher-
ent oscillations varied randomly over time, so that the
locations of the nth-order side peaks were often poorly
aligned across trials. Overall, the results from the com-
mon input model both confirm the primary predictions
of the retinal circuit model and suggest that the global
topological information conveyed by coherent oscilla-
tions between small groups of neighboring neurons may
be largely independent of their mode of generation.

For comparison, we also considered representative
multi-unit spike trains recorded from the cat retina in
response to several different stimulus sizes (Neuensch-
wander et al. 1999), where each sequence consisted of
approximately 4–5 ganglion cells (Fig. 1c, black spikes).
A rate normalization procedure, analogous to that ap-
plied to the spike trains generated by the retinal cir-
cuit model, was used to isolate the information encoded
by coherent oscillations independent of changes in the
average firing rate (added spikes shown in gray). Due to
adaptation effects, the average firing rate fell monotoni-
cally throughout the stimulus. Representative multi-unit
spike trains were chosen to illustrate the different phases
of the response, beginning either 0.2, 1.2 and 2.0 s fol-
lowing stimulus onset (left, middle and right columns,
respectively). As was the case with the artificially gen-
erated spike trains, the rate-normalized data from the
cat retina (gray + black spikes) did not exhibit dramatic
visual differences as a function of stimulus size. How-
ever, inspection of the corresponding single-trial
frequency spectra, computed using the same set of rep-
resentative multi-unit spike train segments (black spikes
only), once more exhibited distinct peaks in the upper
gamma band as a function of increasing stimulus dimen-
sions (Fig. 3c). The largest stimulus, a 9.8◦×9.8◦ square
spot, evoked clear peaks in the upper gamma band,
whereas no such peaks were evident in response to the
smallest stimulus, corresponding to a 0.7◦×0.7◦ square
spot. As in the retinal circuit model, the increased base-
line variability in the spectral amplitudes measured in re-
sponse to the smallest stimulus may be attributed to the
reduced number of spikes in the multi-unit record. Con-
sistent with this interpretation, the variability increased
markedly for spike train segments recorded later in the
response period (e.g. 0.2 vs. 2.0 s). Likewise consistent
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with the results computed from the artificially generated
spike trains, the trial-averaged frequency spectra com-
puted from the cat sequences exhibited size-dependent
peaks in the upper gamma band (Fig. 4c). For the cat
data, the size-dependent peaks computed from the rate-
normalized spike trains (gray traces) were smaller than
those computed directly from the original recordings
(black traces). Because the average firing rate of the cat
ganglion cells declined throughout the stimulus, rate-
normalized spike trains recorded later in the response
required the addition of a proportionately greater num-
ber of Poisson distributed events, thereby diluting the
peak gamma activity relative to the DC amplitude. As in
the retinal circuit model, the rate-normalization process
produced a downward shift in the trial-averaged spectral
amplitudes evoked by the small spot, which again may
be attributed to the reduction in single-trial variability
due to the addition of Poisson distributed events. The
rate normalization procedure also reduced the ampli-
tude of periodic oscillations in the single-trial correla-
tion functions (Fig. 5c), which although smaller than
those computed from the artificial spike trains nonethe-
less exhibited a clear increase in gamma activity as a
function of increasing stimulus size.

The trial-averaged correlations functions computed
from the cat data (Fig. 6c), particularly those based
on the original sequences (not rate-normalized, black
traces), were close in magnitude to the corresponding
quantities computed from the model-generated spike
trains. Likewise, over the range of spot dimensions
examined here, oscillatory modulations increased
smoothly with stimulus size for all three data sets and the
duration and frequency of the underlying coherent oscil-
lations were similar. The quantitative fit between the
model and experimentally derived correlation functions
was particularly strong with respect to the amplitudes
of the main side peaks. The amplitudes of the central
correlation peaks computed from the experimentally
recorded spike trains were confounded by the inclu-
sion of the single-cell auto-correlations functions, which
were removed explicitly from the model generated cor-
relation functions (see Methods). Another characteristic
common to all three data sets was that periodic modula-
tions often persisted longer in the single-trial traces then
in the trial-averaged correlations functions, due to the
fact that the instantaneous phase of the evoked oscil-
lations drifted randomly over time and thus tended to
wash out when computing the mean response over tri-
als. Overall, representative examples of multi-unit data
recorded from the cat retina provide additional support
for the hypothesis that coherent oscillations can reli-
ably encode global stimulus properties, such as size, on
behaviorally meaningful time scales.

a

b

c

Fig. 6 Trial-averaged correlation functions for different sized
spots. Same general organization as in Fig. 3. a–c Black traces
were computed using the original spike trains. Gray traces
were computed using the rate-normalized data. The amplitude,
frequency, persistence and size-dependence of the trial-averaged
correlations were similar for all three data sets. Trial-averaged cor-
relations were generally weaker than representative single-trial
examples, due to the lack of strong alignment between correspond-
ing maxima. Except for a general dilution of gamma activity in the
experimentally recorded sequences, rate-normalization did not
qualitatively affect the overall shape of the trial-averaged corre-
lations
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Fig. 7 Distribution of single-trial gamma activity as a function of
stimulus size. Gamma activity, defined as the mean Fourier ampli-
tude between 65 and 100 Hz relative to either the DC band (panel
b) or to the mean amplitude between 220 and 500 Hz (panels a
and c), was sorted into uniform bins (arbitrary units). a Distri-
bution of single-trial gamma activity recorded from the retinal
circuit model. b Distribution of gamma activity for the common
input model. c Distribution of single-trial gamma-band activity
recorded from cat retinal ganglion cells. a–c The distribution of
gamma activity elicited by a small spot (solid line) was easily dis-
tinguishable from that elicited by the intermediate (dashed line)
and large spots (dotted line)

3.2 Size discrimination

To more fully examine the size information encoded by
retinal oscillations on physiologically relevant spatio-
temporal scales, we constructed probability distributions
of the gamma activity present on single-stimulus trials
(Fig. 7). The gamma activity was defined as the average
spectral amplitude between specified limits, here cho-
sen as 65–100 Hz. Gamma activity was scaled either by
the DC component (number of spikes) present on each
trial, or when using the original, non-rate-normalized
spikes trains, by the average spectral amplitude between
220–500 Hz present during the same 200 ms epoch,
as the latter procedure more effectively eliminated the
size information encoded by non-linear baseline shifts
present at very low firing rates. For each data set and
stimulus condition, a measure of gamma activity was
computed for all 200 trials and the results sorted into 11
uniform bins spanning the full range of the distribution.
We show here only the gamma activity distributions for
the original spike trains, although similar results were
obtained from the rate-normalized data as well. In all
three sets of data, the distributions for the smallest (solid
lines) and largest (dotted lines) spot sizes were reason-
ably distinct, implying that gamma activity from a small
group of neighboring ganglion cells can mediate good
single-trial size discrimination. On the other hand, the
retinal circuit model produced largely overlapping dis-
tributions of gamma activity for the intermediate and
large spots, an effect that was present in the cat data as
well. Although the amplitudes of the spectral peaks
evoked by the large spot were greater than those evoked
by the intermediate spots, the corresponding spectral
widths became narrower, leaving the total area relatively
unchanged. We used the average spectral amplitude
in the upper gamma band, broadly defined, to assess
gamma activity because this quantity seemed more likely
to be accessible to downstream neurons than the ampli-
tude of the peak itself. The distributions of gamma activ-
ity for the three different spot sizes were better separated
in the common input model, probably because the
underlying mechanism was more linear. For the cat spike
trains, the distribution of gamma activity evoked by the
smallest spot size was shifted somewhat to the right com-
pared to the corresponding distributions from the two
models, reflecting the higher level of noise present in
the single-trial spectra computed from the experimental
data. Discrimination between small and large spots is
thus expected to be slightly worse for the experimental
as compared to that mediated by the model spike trains.

To further quantify the degree of discrimination the-
oretically possible on single stimulus trials, we employed
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a Bayes discriminator (Duda et al. 2001). For any pair
of spot sizes, the Bayes discriminator is given by the
value of the gamma activity at which the two distribu-
tions cross, although this definition does not apply if the
distributions have multiple intercepts. If the single-trial
gamma activity falls to the left of the Bayes discrim-
inator, the stimulus is classified as the smaller of the
two spot sizes, whereas the stimulus is classified as the
larger of the two if the gamma activity falls to the right
of the discriminator. The overlap between the two dis-
tributions estimates the number of trials that will be
classified incorrectly. Using the probability distributions
described above based on the original (non-rate-nor-
malized) data, we found that for the retinal circuit model,
based on 200 m s segments containing spike trains from
four neighboring ganglion cells, it was theoretically pos-
sible to discriminate between the larger and smaller
spot on approximately 85% of the trials (Fig. 8a, black
bars). Thus, the gamma activity from a small number
of neighboring ganglion cells conveyed enough infor-
mation on behaviorally relevant time scales to reliably
encode a global property of the stimulus, namely size.
The common input model mediated qualitatively similar
performance on the size discrimination task, albeit with
a steeper dependence on the relative dimensions of the
two stimuli, again suggesting that the global topological
information encoded by coherent oscillations may be
largely independent of their mode of generation (Fig. 8a,
dark gray bars).

Performance on the size discrimination task mediated
by cat retinal ganglion cells was similar to that predicted
by the artificially generated spike trains, although some-
what lower, ranging between 70 and 80% (Fig. 8a, light
gray bars). The slightly poorer performance mediated by
the experimentally recorded data was probably due to
the high variability of the gamma activity evoked by the
small spot, a direct consequence of the very small num-
ber of spikes in each sequence, especially those recorded
late in the response period. In general, our quantitative
estimates of the size discrimination mediated by the cat
data must be carefully assessed with regards to various
confounds implicit in the experimental procedure. The
experimentally recorded spike trains may have included
different ganglion cell types, some of which may not have
contributed to the coherent oscillations, and the differ-
ent sized stimuli may have activated separate, partially
overlapping cell populations. The changing baseline of
the experimentally recorded spikes trains may also have
confounded the discrimination analysis, despite efforts
to correct for the effects of adaptation. Thus, the perfor-
mance levels obtained with the experimentally recorded
data, while consistent with our theoretical results, do not
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Fig. 8 Size discrimination based on single-trial gamma activity
(65–100 Hz). A Bayes discriminator was used to categorize rela-
tive spot size, as either “smaller” or “larger”, based on the single-
trial gamma activity extracted from multi-unit spike trains 200 m s
in duration. Two pairs of spot sizes were compared, either small
versus medium or small vs. large. The sizes of the small, medium
and large spots were as indicated in previous figures. The height
of each bar gives the maximum average percentage of trials that
could be classified correctly, assuming both sizes were equally
likely a priori, based on the distributions shown in Fig. 7. a Size dis-
crimination using original spikes trains. b Size discrimination using
rate-normalized spike trains. a, b Coherent oscillations within a
small group of ganglion cells are capable of supporting reasonable
discrimination between small and large spots on behaviorally rel-
evant time scales. Rate-normalization slightly improved size-dis-
crimination in the retinal circuit model by reducing the variability
of responses to the small spot, an effect opposed in the cat data
by the dilution of gamma activity

represent a quantitative experimental test of the predic-
tions of the retinal model.

Rate-normalized spike trains mediated similar per-
formance on the size discrimination task as was
obtained from the original data (Fig. 7b). By reducing
the single-trial variability in the responses to the small
spot, the rate normalization procedure produced a mod-
est improvement in the size discrimination mediated
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by the retinal circuit model. Because rate-normaliza-
tion was not performed on data from the common in-
put model, slight differences between corresponding bar
graphs reflect intrinsic variations in predicted perfor-
mance arising from the use of different random num-
ber sequences and are consistent with the magnitude
of the estimated error bars. Unlike the retinal circuit
model, rate-normalization did not seem to affect the size
discrimination mediated by the experimental data, pos-
sibly because any improvements in performance result-
ing from the lower variability of the responses to the
small spot were cancelled by the dilution of the gamma
activity evoked by the larger spots. The overall similar-
ity in performance mediated by the original versus the
rate-normalized data indicates that reliable size discrim-
ination was possible even when the average number of
spikes was held fixed across stimulus conditions.

The range of frequencies included in our definition
of gamma activity substantially influenced the ability
to discriminate different sized spots. For example, by
narrowing the operational range to lie between 70 and
90 Hz, thus more precisely demarcating the size-depen-
dent peaks evident in the frequency spectra, perfor-
mance on the size discrimination task improved for
all three sets of data, exceeding 95% for model gener-
ated spike trains and 85% for experimentally recorded
sequences (Fig. 9). Again, the rate normalization proce-
dure slightly improved the size discrimination mediated
by the retinal circuit model but had little qualitative
effect on task performance supported by the cat data.
Although even more precise definitions of gamma activ-
ity could improve size discrimination still further (results
not shown), it becomes correspondingly less clear how
downstream neurons could restrict their sensitivity to
increasingly narrow frequency bands. Since the issue of
how coherent oscillations might be decoded by down-
stream neurons is outside the scope of the present study,
the following analysis employed a fairly conservative
definition of gamma activity, using an analysis window
of at least 35 Hz.

One motivation for constructing rate-normalized
spike trains was to verify, for all three data sets, that
coherent oscillations could reliably encode global stimu-
lus properties even when the number of spikes conveyed
no information about stimulus size. That the firing rate
indeed conveyed no global topological information was
shown explicitly by repeating the size discrimination
task using the total spike count, instead of gamma activ-
ity, as the stimulus classification measure (Fig. 10a).
Using rate-normalized spike trains, the total spike count
on single stimulus trials supported performance levels
that were no better than chance to within statistical
fluctuations.

retina model 
common input model
cat

pe
rc

en
t c

or
re

ct

50%

90%

70%

60%

100%

80%

pe
rc

en
t c

or
re

ct

50%

90%

70%

60%

100%

80%

medium vs. small large vs. small

size discrimination (70-90Hz)

size discrimination (70-90Hz)

normalized firing rate

a

b

Fig. 9 Size discrimination based on single-trial gamma activity
(70–90 Hz). Same organization as in Fig. 8. a, b Narrowing the
definition of gamma activity to more tightly encompass the size-
dependent peaks in the frequency spectra yielded improved per-
formance on the size discrimination task

The second motivation for constructing rate-normal-
ized spike trains was to compare the global topological
information conveyed by coincident events with that
encoded by coherent oscillations. This comparison could
be conducted directly by assessing performance on the
same size discrimination task using an identical set of
rate-normalized spike trains. We found that the total
number of coincident events mediated relatively poor
performance on the size discrimination task, the maxi-
mum percentage of correctly classified trials being
approximately 70% (Fig. 10b). For this analysis, a coin-
cident event was defined as two or more spikes arriving
in the same 1 m s time bin. We explored other bin widths
and/or thresholds but failed to obtain improved perfor-
mance (data not shown). Because some synchronous
events could not be resolved in the experimental data,
the performance estimates given here for the cat spike
trains should be interpreted cautiously. Nonetheless, the
dramatic difference in size discrimination mediated by
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coherent oscillations as compared to that mediated by
the total number of coincident events, a difference that
persisted across both model and experimentally
recorded data sets, suggests that gamma activity may
be a more reliable indicator of global stimulus proper-
ties, at least as measured locally from a few neighbor-
ing cells, than is temporal synchrony. The finding that
temporal synchrony does not provide a reliable size-
dependent signal is moreover consistent with a casual
inspection of the representative raw spike trains shown
in Fig. 2, which indicate that coincident events are pres-
ent in the responses to small spots across all three data
sets. Whereas the relatively high baseline rate of chance
coincident events leads to impaired size discrimination
mediated by temporal synchrony, the absence of coher-
ent oscillations in the responses to small spots leads to
improved size discrimination based on gamma activity.

We next examined how the information encoded by
the coherent oscillations between neighboring retinal
neurons depends both on the spatial and temporal
extent of the pooled response. Performance on the size
discrimination task was again measured by the per-
centage of correctly classified trials, such that the small
and large spots were presented with equal probability.
Gamma activity was defined as the average spectral
amplitude between 60 and 95 Hz, scaled as described
previously. Only the original, non-rate-normalized spike
trains were used for this portion of the study. Perfor-
mance was plotted as a function of the duration of the
multi-unit spike train segments incorporating different
numbers of model ganglion cells, arranged in groups of
either 1 × 1, 2 × 2, 3 × 3, or 4 × 4 (Fig. 11a). Performance
on the size discrimination task ranged from a low of be-
tween 55 and 65% for spike trains consisting of only
a single model ganglion cell, to highs of approximately
95% or better for spike trains consisting of between
9 and 16 model ganglion cells and lasting from 200 to
400 m s in duration. Even for analysis windows lasting
only 100 m s, performance levels of 75 and 85% were
obtainable with 9 and 16 cells, respectively. For the short-
est analysis window considered here, equal to 50 m s,
maximum performance using spike trains from the reti-
nal model fell to 75%. For all window sizes, the degree of
discrimination increased systematically as more neurons
were included in the multi-unit spike train. For a fixed
number of neurons, performance generally increased as
a function of the duration of the spike train segments
as well, although there were a few exceptions to this
rule, possibly resulting from ongoing random drift in the
phase of the coherent oscillations, making the extraction
of gamma activity more difficult over long intervals.

Artificial spike trains generated by the common input
model, consisting of 1, 4, 9, or 16 units, also mediated
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Fig. 10 Size discrimination based on coincident events. a The size
discrimination task was repeated using the total number of spikes
in the rate-normalized event trains to classify stimuli as either
smaller or larger. As expected, performance was near chance. b
Size discrimination using the total number of coincidences (two
or more events in a single 1 m s time bin). Performance was bet-
ter than chance but substantially worse than that mediated by
coherent oscillations

improved performance on the size discrimination task
as both the duration and number of units increased.
The common input model mediated comparatively bet-
ter discrimination over very short intervals, 50 m s in
duration, a discrepancy that may be related to the syn-
chronization of neighboring ganglion cells in the retinal
network model due to extensive gap junction coupling
via amacrine cells (Kenyon et al. 2003). Nonetheless, the
results from both models suggest that the information
conveyed by coherent oscillations, especially on physi-
ologically relevant spatial and temporal scales, depends
strongly on both the duration of, and number of cells
included in, the multi-unit spike train.

We have so far focused on relatively coarse discrimi-
nations between large and small spots. Model spike train
were used to study whether coherent oscillations could,
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Fig. 11 Size discrimination improves as multi-unit spike train
segments become longer and/or include more cells. Analysis was
performed using original (non-rate-normalized) event trains with
gamma activity defined as the average spectral amplitude between
60 and 95 Hz, scaled as described previously. A Bayes discrimina-
tor was used to classify spots as being either “smaller” or “larger”
based on the single-trial gamma activity. a Percentage of cor-
rectly classified trials plotted as a function of the analysis window
size for multi-unit spike trains recorded from the retinal model.
(Explanation of symbols: open circle=1 × 1, open square=2 × 2,
open diamond=3 × 3, × =4 × 4 model ganglion cells). b Percent of
correctly classified trials using multi-unit spike trains generated
by a rate-modulated Poisson process. (Explanation of symbols:
open circle = 1, open square = 4, open diamond = 9, × = 16 units).
a, b Performance improved as the analysis window size and the
number of neighboring ganglion cells included in the analysis was
increased

in principle, support finer discriminations over a wider
range of spot sizes, from 1 × 1 to 16 × 16 ganglion cells
(Fig. 12). The size of the smaller spot in each pair is given
by the intercept of each curve with the x-axis, whereas
the size of the larger spot is given by the x-coordinate
of each point. Moving left to right along each curve, the
size of the smaller spot is held constant while the size
of the larger spot increases as indicated. The analysis

window for all pairwise size discriminations was 200 m s.
Gamma activity was defined as the mean spectral ampli-
tude between 60 and 95 Hz and only the original, non-
rate-normalized spike trains were used for this analysis.
Our results suggest that the size information encoded
by coherent oscillations, at least on behaviorally rele-
vant time scales, is somewhat binary, allowing discrimi-
nation only between small and large spots. This coarse
encoding was evident whether the multi-unit spike trains
used in the discrimination analysis contained 4 cells (left
column) or 9 cells (right column). Only poor discrimina-
tion (< 75%) was possible between pairs of spots whose
diameters both exceeded approximately 4–6 ganglion
cells. While these results await detailed experimental
confirmation, they suggest that the size information con-
veyed by high frequency coherent oscillations among
retinal neurons is something of an either-or proposi-
tion, at least as measured by the average gamma activ-
ity, permitting discrimination only between small and
large spots. It is possible that additional size information
might be encoded by retinal oscillations if defined more
narrowly, such as by the peak amplitude, rather than the
average power, in the upper gamma-band, although it
is less clear how such information could be extracted by
downstream neurons.

3.3 Shape independence

Finally, we addressed the question of whether size-
dependent retinal oscillations, for a fixed level of
contrast, are independent of object shape. The answer
to this question may have important behavioral implica-
tions. For example, could retinal oscillations be used, at
an early processing level, to distinguish a swarm of small,
disconnected fragments (i.e. flies) from a large contig-
uous object (i.e. a bird)? To investigate this issue, we
examined the responses of the retinal model to sets of
random binary images. If retinal oscillations are indeed
shape independent and sensitive only to contiguous size,
then the network responses to a set of random binary
images should exhibit a sharp transition in total gamma
activity as the average pixel density exceeds a critical
percolation threshold at which large connected clusters
first appear, due to a percolation phase transition in the
2D image space (Grimmett 1999). In the present con-
text, a connected cluster is defined as a group of ON
pixels all connected by at least one path, regardless of
length, that includes no OFF pixels. Paths are defined in
the site sense of nearest neighbor. There are slight differ-
ences between site and bond percolation (e.g. differ-
ent critical exponents) that are overwhelmed by lateral
smoothing in the retina and don’t concern us here.
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Fig. 12 Coarse discrimination between spot sizes. Pairs of stim-
uli, consisting of two different sized spots, were classified as either
“smaller” or “larger” based on the single-trial gamma activity,
falling within the range 60–95 Hz, computed from non-rate-nor-
malized data. The maximum percent correct, estimated via Bayes-
ian discrimination, is plotted for all pairwise combinations. Each
point represents a different discrimination task. The size of the
smaller spot is given by the x-intercept of the continuous curve
and the size of the larger spot by the x-coordinate. a, c Multi-
unit spike trains from the retinal model consisting of a 2 × 2 and

c 3 × 3 neighboring ganglion cells. b, d Rate-modulated Poisson
process (common input model) consisting of b 4 units and d 9 units.
Spot sizes specified as L-values (see Methods) ranging from 1 to
16. Sizes corresponding to the labels “small”, “med” and “large”
used in previous figures are indicated separately. a–d Performance
on the pairwise size discrimination task was poor between spots
containing more than 4–9 cells, suggesting that coherent oscilla-
tions primarily allow only coarse discriminations between small
and large spots

A set of random binary images was constructed by
independently turning each pixel white, against a black
background, with a probability p between zero and one
(Fig. 13a). We computed trial-averaged frequency spec-
tra from massed spike trains that included all 128 × 128
ganglion cells in the model (the size of the model was
increased for these experiments to reduce finite-size ef-
fects). At low pixel densities, the image consists entirely
of small isolated clusters (Fig. 13a, p = 0.1). Because
the retinal oscillations produced by separate objects are
not coherent (Ishikane et al. 1999; Kenyon et al. 2004c;
Neuenschwander and Singer 1996), the total gamma-
band activity remains negligible at low pixel densities, at

which the oscillations produced by the separate clusters
possess random relative phases and thus tend to cancel
out (Fig. 13b, p < pc with pc ≈ 0.6 for site percolation).
On the other hand, for pixel densities at or above the
percolation threshold there exist connected clusters that
span the entire image and across which the oscillations
are coherent. As expected, there was a sharp increase
in mean spectral amplitude in the upper gamma-band
as the pixel density crossed the percolation threshold,
implying that coherent retinal oscillations encode the
presence of large features regardless of their precise
shape (Fig. 13b, p > pc). Both the average gamma-band
activity (Fig. 13c, solid line) and the average cluster size
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Fig. 13 Binary images
produce a sharp transition in
gamma activity at the
percolation threshold. a
Random binary images with
varying pixel density, p,
indicated above each image.
Above the percolation
threshold (p ≈ 0.6),
connected clusters of white
pixels span the image. For
clarity, the total number of
pixels was reduced in these
illustrations from 256 × 256 to
64 × 64. b Trial-averaged
multi-unit frequency spectra
computed from massed spike
trains combining all 128 × 128
model ganglion cells. Above
the percolation threshold, a
large peak appears in the
upper gamma band. c Gamma
activity (solid black line)
exhibits a sharp transition
around the percolation
threshold, consistent with the
phase transition in the mean
size of connected clusters
(dotted dark gray line). Total
luminance (dashed light gray
line), which grows linearly
with pixel density, cannot
account for the sharp
transition in gamma activity.
There were slight differences
in the implementation of the
retinal circuit model used for
these experiments (Miller
et al. 2006), but these had no
qualitative effect on our
conclusions
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(Fig. 13c, dotted dark gray line, Hoshen and Kopelman
1976) exhibited sharp transitions around the percolation
threshold, whereas the average luminance was simply
proportional to the mean pixel density (Fig. 13c, dashed
light gray line). Retinal processing is thus predicted to
convert a phase transition in the spatial properties of the
input image into a transition in the temporal patterning
of the output spike trains.

The fact that the mean luminance was not held con-
stant as a function of pixel density does not appear
to seriously confound our results. A sharp increase in
gamma activity was still evident near the percolation
threshold even when the mean luminance was kept con-
stant by reducing the intensity of each pixel in propor-
tion to the mean pixel density (not shown), although the
transition in this case was smoother due to the strong
dependence of retinal oscillations on stimulus intensity

or contrast (Kenyon et al. 2004b; Neuenschwander et al.
1999). The network model lacked known physiological
mechanisms for luminance adaptation that would have
likely reduced the importance of mean image intensity.
The transition in gamma activity was not as sharp as
the transition in mean cluster size, presumably because
lateral processing in the retina tends to lump together
large, nearly connected clusters (Kenyon et al. 2004c).
Our retinal model contained only ON-ganglion cells, but
we predict similar phenomenon to be exhibited by OFF-
ganglion cells in response to contrast-inverted stimuli.

4 Discussion

Using artificial spike trains generated by a computer
model of the inner retina, we examined the role of coher
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ent oscillations in the encoding of visual information.
Our findings support the hypothesis that coherent high
frequency oscillations allow small clusters of neighbor-
ing ganglion cells to convey global stimulus properties,
such as size, over biologically reasonable time scales.
The ability to represent information in a small number
of cells over a single inter-saccade interval is essential
if coherent oscillations between retinal neurons are to
convey behaviorally relevant stimulus attributes to early
visual processing stages where spatial convergence is
generally low (Alonso et al. 2001; Usrey et al. 1999).

A mechanism for locally encoding the presence of
large visual features early in the visual system could
have behavioral advantages. For many organisms, large
objects represent possible danger and early detection
allows for an early evasive response. It is possible, for
instance, that high frequency oscillations between dim-
ming detectors in the frog retina contribute to just such
an early warning system (Ishikane et al. 2005). Sim-
ilar multiplexing of local and global stimulus proper-
ties might be present in other sensory systems as well.
For example, coherent oscillations allow discrimination
between prey and communication signals in weakly elec-
tric fish (Doiron et al. 2003) and in the olfactory system
encode contextual category information (Friedrich et al.
2004).

The question of how the information encoded by
coherent oscillations among retinal ganglion cells might
be decoded by downstream networks is beyond the
scope of the present study. However, we may imagine
that corresponding high frequency resonances, of cellu-
lar, synaptic and/or network origin, might allow neural
circuits in the LGN or primary visual cortex to respond
preferentially to oscillatory input.

Our results show that artificial spike trains gener-
ated by two very different mechanisms mediate simi-
lar single-trial size discrimination. Coherent oscillations
in the retinal model were produced by negative feed-
back in which ganglion cells, via their electrical cou-
pling to axon-beating amacrine cells, played a crucial
dynamical role. Alternatively, realistic spike trains could
be produced by modulating the instantaneous event
rates of a set of Poisson generators using a common
oscillatory input. Whereas the free parameters in both
models were chosen to reproduce the trial-averaged
correlations measured experimentally, is was not imme-
diately obvious that the single-trial signal-to-noise in
the two models would be identical, especially signals
conveyed by high frequency oscillations. However, both
models supported similar performance on size discrim-
ination tasks, suggesting that the information conveyed
by coherent oscillations is not strongly dependent on
how such oscillations are produced. While the different

methods used here to generate oscillatory spike trains
did not span the space of all possible mechanisms, the
two models were nonetheless highly complementary. By
using both models to test our main hypothesis, we were
thus able to increase the generality of our conclusions.

To test the consistency of our main hypothesis against
experimental data, we reanalyzed multi-unit spike trains
recorded from the cat retina. Compared to the model
data, the experimentally recorded spike trains medi-
ated somewhat lower levels of performance on the size
discrimination task, with approximately 75% of the stim-
uli being classified correctly on the basis of the average
gamma activity in multi-unit spike trains 200 m s in dura-
tion. The recorded population may not have been homo-
geneous, however, and the contribution of the different
cell types may have varied as a function of both the
spot size as well as the time from stimulus onset. More
extensive experimental studies, in which simultaneously
recorded units are isolated and individually identified,
will be required before questions regarding the informa-
tion encoded by high frequency oscillations can be satis-
factorily resolved. Nonetheless, our reanalysis was able
to confirm that the predictions of the retinal model are at
least qualitatively reasonable and therefore potentially
worthy of additional experimental study. It may also be
possible to test some of the predictions of the retinal
model using local field potentials, or even population
averages such as the electroretinogram (ERG), as our
prediction of a sharp transition in total gamma activ-
ity as the pixel density crosses a percolation threshold
requires only a general assessment of retinal output at
high temporal resolution.

The role of correlations in the retinal code is con-
troversial. Using an information theoretic analysis it
has been argued that correlations between retinal gan-
glion cells encode relatively small amounts of additional
information about natural visual scenes compared to
their independent firing rates (Nirenberg et al. 2001).
However, these results were based on short sections of
spike train data, 10 m s in duration, which although sen-
sitive to precise temporal synchrony were too short to
resolve oscillations in the upper gamma band. We sim-
ilarly failed to find strong evidence that synchrony, as
measured by the additional number of coincidences
among a few neighboring ganglion cells, provided a
reliable encoding of global features such as spot size.
However, our results do not address other types of infor-
mation that might be encoded by synchronous events
(Schnitzer and Meister 2003). The approach taken here,
namely, examining what stimulus properties can be
inferred over physiologically meaningful spatial and te-
mporal scales, suggests a reasonable strategy for resolv-
ing such questions. In addition, the role of synchrony
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as a possible binding mechanism has sparked intense
debate (Shadlen and Movshon 1999; Singer and Gray
1995). Our results suggest that coherent oscillations may
encode global stimulus information regardless of their
possible contribution to feature binding. Finally, it has
been observed that any correlation between neural
spike-trains is detrimental to rate-coded signals
(Shadlen and Newsome 1998). Correlations, however,
are ubiquitous throughout the brain and our results
demonstrate that, at least in some cases, may convey
useful information not unambiguously represented by
local time-averaged firing rates.
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Appendix A. Retinal model

Model spike trains with realistic spatiotemporal cor-
relations were generated by a retinal feedback circuit
(Fig. 1), organized as a 32 × 32 array with wrap-around
boundary conditions containing five distinct cell types:
Bipolar cells, small amacrine cells, large amacrine cells,
axon-bearing amacrine cells, and ganglion cells. All cell
types were modeled as single compartment, RC circuit
elements obeying a first order differential equation that
can be written efficiently in terms of matrix multiplica-
tions:

↔̇
V

(k)

= − 1
τ (k)

(
↔
V

(k)

−
∑

k′

↔
W

(k,k′)
· f (k,k′)

(↔
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(k′))
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W

(k,k′)T

− b(k) − ↔
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(k)
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, (2)

where
↔
V

(k)

is a 2-D array denoting the normalized mem-
brane potentials of all cells of type k, (1 ≤ k ≤ 5), τ (k)

is the time constant, b(k) is a bias current for setting

the resting potential,
↔
L

(k)

is an external input intended

to represent light stimulation,
↔
W

(k,k′)
gives the connec-

tion strengths between presynaptic {k′} and postsyn-
aptic {k} cell types as a function of their separation

along one direction, defined here as ‘vertical’,
↔
W

(k,k′)T

gives the same information as a function of separa-
tion along the perpendicular direction, defined here as
‘horizontal’, and the functions f (k,k′) give the associated
input-output relations for the indicated pre- and post-
synaptic cell types, detailed below. All membrane
potentials were subject to a lower cutoff, equal to −1.5.

The output of the axon-mediated inhibition was de-
layed by 2 m s, except for the axonal connections onto
the axon-bearing amacrine cells, which was delayed for
1 m s. All other synaptic interactions were delayed by
1 m s. All equations were integrated in Matlab©R using
a direct Euler method with an integration time step of
1 m s.

The input–output function for gap junctions was given
by the identity:

f (k,k′)
(↔

V
(k′))

= ↔
V

(k′)
, (3)

where the dependence on the presynaptic potential has
been absorbed into the definition of τ (k). This is possi-
ble because both the decay term in Eq. 2 and the omit-
ted dependence on the presynaptic potential in Eq. 3

depend linearly on
↔
V

(k)

, allowing the coefficients to be
combined. The input–output function for non-spiking
synapses was constructed by comparing, on each time
step, a random number with a Fermi-function:
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= θ

⎛
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⎣ 1

1 + exp
( − α

↔
V
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⎦ − r

⎞
⎠, (4)

where α sets the gain (equal to 4 for all non-spiking
synapses), r is a uniform random deviate equally likely
to take any real value between 0 and 1, and θ is a step
function, θ(x) = 1, x ≥ 0; θ(x) = 0, x < 0.

Lastly, the input–output relation used for spiking syn-
apses was:

f (k,k′)
(↔

V
(k)

)
= θ

(↔
V

(k′))
. (5)

A modified integrate-and-fire mechanism was used
to model spike generation. A positive pulse
(amplitude = 10.0) was delivered to the cell on the time
step after the membrane potential crossed threshold,
followed by a negative pulse (amplitude = 10.0) on the
subsequent time step. This resulted in a 1 m s action po-
tential that also produced impulse responses in electri-
cally coupled cells, an important element of the circuit
dynamics. The bias current, b, was incremented by 0.5
following each spike, and then decayed back to the rest-
ing value with the time constant of the cell, adding to
the relative refractory period. There was in addition an
absolute refractory period of 1 m s.

Along both the horizontal and vertical directions, syn-
aptic strengths fell off as Gaussian functions of the dis-
tance between the pre- and post-synaptic cells. For a
given horizontal separation, the horizontal weight factor
was determined by a Gaussian function of the following
form:
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Table 1 Cellular parameters

τ b n × n d σ

BP 10.0 −0.0 64 × 64 0.25 0.25
SA 25.0 −0.5 64 × 64 0.25 0.25
LA 20.0 −0.25 32 × 32 1.0 0.5
PA 5.0 −0.025 64 × 64 0.25/9.0a 0.25/3.0a

GC 5.0 −0.025 32 × 32 1.0 0.5

Explanation of symbols: τ Time constant (m s), b bias, n × n: array size, d cutoff radius, σ Gaussian radius (see Eq. 6)
a Inner radius/outer radius

Table 2 Synaptic weights

BP SA LA PA GC

BP * −0.375b −3.0b −3.0b /−15.0c *
SA 3.0b * −3.0b 0.0b /−15.0c *
LA 3.0b * 0.25a −3.0a /−15.0c *
PA 0.75b −0.75b * 0.25a /−45.0c 0.25a,d

GC 9.0b −4.5b −4.5b 0.25a /−270.0c *

Each term represents the total integrated weight from all synapses arising from the corresponding presynaptic type (columns) to each
cell of the corresponding postsynaptic type (rows), (the quantity W(k,k′) in Eq. 4). Asterisk (*) indicates absence of corresponding
connection
Synapse type indicated by superscript: agap junction, bnon-spiking synapse, cspiking synapse, d Maximum coupling efficiency (ratio of
post- to pre-synaptic depolarization) for this gap junction synapse: DC = 11.3%, action potential = 2.7%

W(k,k′)
i(k),j(k′) = α

√
W(k,k′) exp

⎡
⎢⎣−

∥∥∥i(k) − j(k
′)
∥∥∥2

2σ (k,k′)2

⎤
⎥⎦ (6)

where W(k,k′)
i(k),j(k′) is the horizontal weight factor from pre-

synaptic cells of type k′ located in the jth column to the
postsynaptic cells of type k located in the ith column, α is
a normalization factor, determined numerically, which
ensured that the total synaptic input integrated over all
presynaptic cells of type k′ to every postsynaptic cell
of type k equaled W(k,k′), σ (k,k′) is the Gaussian radius

of the interaction, and the quantity
∥∥∥i(k) − j(k

′)
∥∥∥ denotes

the horizontal distance between the pre- and post-synap-
tic cells, taking into account the wrap around boundary
conditions employed to mitigate edge effects. An analo-
gous weight factor describes the dependence on vertical
separation. Equation 6 was augmented by a cutoff condi-
tion that prevented synaptic interactions beyond a spec-
ified distance, determined by the radius of influence of
the presynaptic outputs and the postsynaptic inputs, rep-
resenting the axonal and dendritic fields, respectively.
A synaptic connection was only possible if the output
radius of the presynaptic cell overlapped the input radius
of the postsynaptic cell. Except for axonal connections,
the input and output radii were the same for all cell types.
For the large amacrine cells and the ganglion cells, the
radius of influence extended out to the centers of the
nearest neighboring cells of the same type, producing a
coverage factor greater than one (Vaney 1990). The radii

of the bipolar, small, and axon-bearing amacrine cells
(non-axonal connections only) extended only halfway
to the nearest cell of the same type, giving a coverage
factor of one (Cohen and Sterling 1990). The external
input was multiplied by a gain factor of 3. Values for
model parameters are listed in Tables 1 and 2.

Appendix B. Common input model

An oscillatory time series of a duration, T, and temporal
resolution, �t, could be constructed by first defining the
discrete frequencies, fk:

fk = k
T

, 0 ≤ k <
T
�t

(7)

in terms of which the discrete Fourier coefficients were
defined as follows:

Ck = C exp (2π irk) exp

(
(fk − f0)

2

2σ 2

)
(8)

where f0 is the central oscillation frequency, σ is the
width of the spectral peak in the associated power spec-
trum, rk is a uniform random deviate between 0 and
1 that randomized the phases of the individual Fourier
components (generated by the Matlab©R intrinsic func-
tion RAND) and C is an overall scale factor. The coeffi-
cients, Ck, were used to convert back to the time domain
using the discrete inverse Fourier transform:
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Rn = A
1
N

N−1∑
k=1

Cke−2π ifktn + R0 (9)

where the real part of Rn denotes the value of the
time-dependent firing rate at the discrete times, tn = n
�t, N = T�t, A is an empirically determined scale fac-
tor and we have added a constant offset, R0, which
sets the mean firing rate, equal to 50 Hz. The quantity
A, with units of Hz, was determined by the formula:
A = R0(0.16 + 0.14L), where L represents the linear
stimulus size, or length, along one axis, with values rang-
ing from 1 to 16, and the other coefficients were deter-
mined empirically to produce a reasonable match to
the experimental data. Stimulus sizes denoted “small”,
“med” and “large” in the text corresponded to L values
of 1, 4 and 6, respectively. The quantity C in Eq. 8 was
determined by setting the standard deviation of Rn over
all time steps to unity when A = 1. The width of the
frequency spectrum, σ , also in units of Hz, was given by
an analogous formula: σ = 9.4–0.6 L. Negative values of
Rn were truncated at zero and the resulting time series
rescaled so that its average value remained equal to R0.

The time series defined by Rn was used to generate
oscillatory spike trains via a pseudo-random process:

Sn = θ(Rn�t − r) (10)

where Rn�t is the probability of a spike in the nth time
bin, θ is a step function, θ(x < 0) = 0, θ(x ≥ 0) = 1, and
r is again a uniform random deviate. In the limit that
Rn�t 
 1, the above procedure reduces to a rate-mod-
ulated Poisson process. The same time series, Rn, was
used to modulate the firing rate of each element contrib-
uting to the artificially generated multi-unit spike train,
thus producing temporal correlations due to co-varying
input.
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