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Abstract

We describe here an automated system that accurately maps tissue sections stained by immunocytochemistry for an inducible
nuclear protein. The sections are scanned with a computer-controlled microscope setup hooked to a CCD camera. Raw images
captured at high resolution are filtered using highly selective criteria for the recognition of labeled cell nuclei. The total population
of recognized labeled nuclei is then divided into separate bins, according to their labeling intensities. Finally, information about
both the position and labeling intensity of labeled nuclei is represented in average density maps. The system was optimized for
the quantitative mapping of neuronal cells expressing the inducible gene ZENK in the brain of songbirds, in response to
stimulation with song, but should be of general applicability for the mapping of inducible nuclear proteins. © 1999 Elsevier

Science B.V. All rights reserved.
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1. Introduction

The activation of neuronal cells by extracellular stim-
ulation typically results in the sharp and transient in-
duction of immediate early genes (IEGs), several of
which are encoding transcriptional regulators (Morgan
and Curran, 1989). This response has been postulated
to represent the early stages in a cascade of gene
regulation leading to the modification of neuronal
properties that could provide a basis for memory for-
mation (Goelet et al., 1986). Irrespective of its precise
function, analysis of the IEG response has become
increasingly popular as a tool in the assessment of
sensorimotor responses to particular stimuli and of
physiological states (Chaudhuri, 1997).
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Some intriguing insights into neural mechanisms in-
volved in vocal communication in birds have originated
from the finding that the IEG ZENK, also known as
zif-268 (Christy et al., 1988), egr-1 (Sukhatme et al.,
1988), NGFI-A (Milbrandt, 1987) and Krox-24
(Lemaire et al., 1988), as well as the c-jun gene
(Nishimura and Vogt, 1988), are rapidly induced in the
brain of songbirds when they hear playbacks of conspe-
cific song (Mello et al., 1992; Nastiuk et al., 1994). This
induction is most prominent in the caudomedial neos-
triatum (NCM) and adjacent caudomedial hyperstria-
tum ventrale (CMHYV) (Mello and Clayton, 1994), both
areas thought to participate in auditory processing
(Chew et al., 1995, 1996a,b; Vates et al., 1996; Stripling
et al., 1997). ZENK induction has also been observed
in several telencephalic song control nuclei as a result of
active singing behavior in captive as well as in wild
songbirds (Jarvis and Nottebohm, 1997; Jarvis et al.,
1997; Jin and Clayton, 1997). ZENK encodes a zinc
finger transcriptional regulator of nuclear localization,
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and is thought to control the expression levels of down-
stream genes that contain ZENK binding motifs in
their promoters (Christy and Nathans, 1989; Gupta et
al., 1991). ZENK induction in NCM could represent an
early regulatory component whose induction is neces-
sary for long-term neuronal habituation to song (Chew
et al., 1995, 1996b).

We have recently used ZENK immunocytochemistry
(ICC) to determine the time course of ZENK protein
expression and the brain distribution of ZENK protein
after song stimulation (Mello and Ribeiro, 1998). Due
to its sensitivity, high spatial resolution and good tissue
preservation, ZENK ICC can be counted among the
best methods for functional mapping of brain areas
involved in natural behaviors in vertebrates. Although
other systems for tissue mapping are available (Alvarez-
Buylla and Vicario, 1988; Hibbard et al., 1996), we
decided to develop an automated system for ICC analy-
sis that takes full advantage of the intrinsic properties
of the ZENK ICC methodology. Our system accurately
maps the spatial distribution and labeling intensities of
immunopositive cell nuclei within a region of interest.
Applied to songbirds, it allows for a high-resolution
description of the brain’s ZENK response to song
stimulation (Ribeiro et al., 1998). With small adjust-
ments, the system should be of general applicability to
the mapping of labeled cell nuclei.

2. Method
2.1. Tissue preparation

We analyzed brain sections from adult female ca-
naries (Serinus canaria) stimulated with playbacks of a
variety of auditory stimuli, including a whole canary
song. Birds that heard only silence constituted an un-
stimulated control group. Data from about 110 animals
were used at various stages in the development of this
mapping system. The animals were stimulated for a
period of 30 min, essentially as described elsewhere
(Mello and Ribeiro, 1998; Ribeiro et al., 1998). The
birds were killed and perfused with fixative 60 min after
the end of stimulation, which is well within the time of
peak ZENK protein expression (Mello and Ribeiro,
1998). The brains were dissected, frozen and sectioned
(20 pm) in the parasagittal plane (Fig. 1) and mounted
onto sylanated slides. Particular care was taken to
ensure that all brains were cut in the same orientation.

2.2. ZENK ICC

We used an anti-ZENK polyclonal antiserum (C-19;
Santa Cruz Biotech., Santa Cruz, CA, USA) and a
previously described ICC protocol (Mello and Ribeiro,
1998). For detection of antigen-bound primary anti-

body, we used the avidin-biotinperoxidase method
(ABC Elite kit, Vector Laboratories); the final cell
labeling was the result of 3,3’-diaminobenzidine (DAB)
precipitation over cell nuclei, with nickel intensification.
All sections to be compared were processed in parallel,
using the same batches of reagents.

2.3. Imaging

2.3.1. System set-up
Sections are scanned using a computer-controlled
microscope set-up, consisting of:
1. Silicon Graphics Indigo> Workstation running
Unix, with
195 MHZ IP28 processor;
MIPS R10000 processor chip, revision 2.5;
MIPS R10010 floating point chip, revision 0.0;
32 Kbytes data cache;
32 Kbytes instruction cache;
1 Mbyte secondary unified instruction/data
cache;
320 Mbytes main memory;
SOLID IMPACT graphics board;
IMPACT compression board, unit 0, revision 0:0;
Software: the code of the navigator program (see
later), as well as the analysis, was written in C
language.
2. Olympus BX60 upright microscope, with
o UPLFL UPlan Fluorite 40X/0.75 and 4X/0.13
objectives;
Video Adapter with 0.3X reduction lens;
CCD camera Sony XC-77CE PAL-N (768 x 576
pixels);
Motorized Stepper Stage, 4 x 3 inches travel for
Olympus BX, Prior Scientific model 500-H101;
O Microstepping Motor Control Processor, three
axes, | um precision, Prior Scientific model 500-
H128V3, controllable from RS232 port.
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Fig. 1. Parasagittal section of the canary brain at the level of NCM
(1100—1300 um lateral to mid-line). BS, brainstem; Cb, cerebellum;
H, hyperstriatum; Hp, hippocampus; L, subfield L2a of field L; LPO,
lobus parolfactorius; N, neostriatum; NCM, caudomedial neostria-
tum. Scale 1. mm.
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Fig. 2. ‘Navigator’ interface. The upper panel shows the scan at low resolution of the entire slide. The lower right panel shows a single frame at
high resolution. The lower left panel shows the selection of the area of interest (NCM). The black rectangles represent the regions selected for
scanning, the topmost rectangle encloses the region selected for the computation of background illumination; and the white rectangle indicates the

current position of the objective.

2.3.2. Description of pasting algorithm

The ‘navigator’ program (Fig. 2) scans, at low resolu-
tion (4X objective), the entire slide containing the sec-
tions to be analyzed, pasting the frames with the
position obtained from the stage. On screen, polygons
are drawn surrounding the sections of interest, as well
as the area of the slide in which the average back-
ground illumination over the glass will be computed.
This area is selected in each slide from a region of the
coverslip without tissue (Fig. 2), and 400 frames are
averaged. To compensate for inhomogeneities in illumi-
nation, each frame is divided pixel-wise by the average
background.

Although information about the xy position is pro-
vided by the stage, it is reliable only up to 1 um. With
the 40X objective, the final resolution of the system is 3
pixels/um, which means that a typical cellular nucleus
spans around 15 pixels in diameter. Therefore, a preci-
sion of 1 pm in 200 um of scanned tissue is not enough
to reliably paste hundreds of frames without distorting
the circular shape of a nucleus. We therefore developed
a pasting algorithm that achieves sub-micron precision,
which will be described.

In the first step, the system scans the tissue, acquires
frames through the CCD camera, and stores them as a
JPEG compressed movie file (Iris Media Guide, 1994),
together with the position returned by the stage, until
the entire region of interest is covered. The overlap
between consecutive frames is 150 pixels in x (out of
768) and 100 in y (out of 576). In the case of NCM, this
results in approximately 300 frames, with a total size of
around 150 MBytes. For each slide, the focal plane of
the initial frame is determined manually. Autofocus is
then implemented in the consecutive frames, in the
following way: a focus score is computed as the abso-
lute value of the gradient of the intensity integrated on
a 127 x 127 central box; this is done for 10 focal planes
around the current plane, in steps of 10 pum; the plane
that maximizes the focus score is selected.

The next step is performed off-line. Each frame is
processed for object recognition (cell nuclei, tissue ir-
regularities, anatomical landmarks) using an algorithm
previously described (Bourdieu et al., 1995). The rela-
tive position of all objects recognized in each frame is
used to refine the absolute position of the frame. This is
implemented as follows:
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1. The first frame is selected as the origin of the
coordinate system.

2. With the information provided by the stage, the
next overlapping frame is selected. A histogram of
inter-object distances between the frames is com-
puted: using the relative position of the objects in
each frame (equivalently, superimposing the
frames), the vectorial distance is computed between
each object in one frame and every object in the
other frame; the resulting x, y values are then added
to the x and y histograms.

3. The most populated bins in x and y are chosen, so
that the corresponding values form the distance
vector between the frames. This vector is used to
correct the inter-frame distance provided by the
stage (Fig. 3).

4. These inter-frame distance vectors are used to re-
constitute the final image of the entire area of
interest, iterating the process for all successive
frames. We have estimated that the reconstruction
error of this method is less than 1 um in 500 um of
scanned tissue.

After this off-line processing, the final image is stored
as a JPEG compressed movie file, with 1008 x 1008
pixels frames. To avoid discrepancies on the borders,
there is an overlap between consecutive frames of 100
pixels. For a typical NCM (1 um x 1.5 pm), the final
movie file is around 8 MBytes in size, and the whole
process takes about 10 min.

2.3.3. Description of recognition algorithm

For each pixel, we measure the optical density (O.D.)
resulting from DAB-nickel precipitation. To imple-
ment an edge detector, we first approximate the ‘lapla-
cian’ of the image by multiplying each pixel value by
o/z, where ¢ and z are, respectively, the variance and
mean intensity on a 3 x 3 kernel centered at each pixel.
The image thus obtained has peaks where the variation
of the intensity relative to the local mean (in the scale
of 1 pum) is high, and valleys where the relative varia-
tion is low. Therefore, it works as an effective detector
of edges whose length scale is in the order of 1 um,
compatible with the definition of the nucleus border
under the microscope. The resulting images are then
processed for object recognition, based on an algorithm

previously described (Bourdieu et al., 1995). The sup-
port S of each object is computed filling the contours
produced by the ‘laplacian’ (typically ‘rings’ for labeled
nuclei). Anything outside the objects’ support is consid-
ered as tissue, on which the average (non-specific) back-
ground labeling is computed. For each recognized
object, we compute:
e The ellipse £ with constant intensity that best fits the
shape and intensity distribution on the support. This
is done by diagonalizing the inertia matrix,

Ny= Litojt)Itk) = iy )M M

where i(k), j(k) is the x, y position of pixel k, I(k) its
intensity, and

(i) = Tty M ®)
Jy= ij(k)I (k)M 3)
M=} I(k) @)

kes

o The eccentricity, as the ratio of the radia of E
(eigenvalues of N,),

EC = Rmin/Rmax

o The variance of the actual contour respect to the
contour of E,

Ven [z b+ T wm}/MT )

kes teE

where ¢(k)=1 if k is outside E, and 0 otherwise;
W(t)=1if ¢ is outside S, 0 otherwise; and MT is the
total number of pixels in S.

o The variance of the intensity in S,

Vi= [z I(k)*/MT — (M/MT)2}/M (6)
kes
o The labeling intensity relative to the average back-
ground labeling B,
I, =M|(MT " B)

These measurements are then used to filter the ob-
jects: 3 pm < diameter <10 pm; E->0.3; V-<0.5;
Vi <1.5; I, >1.4; only objects satisfying all of these
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requirements are considered labeled cell nuclei. Finally,
the position and labeling intensity 7/, of all labeled
nuclei are stored for further processing. An example of
the application of this procedure to an NCM section is
shown in Fig. 4.

2.3.4. Determining the outline of the region of interest

On the screen, a perimeter is drawn over the raw
reconstituted image, so as to include the entire region
of interest. In our particular case, the rostral boundary
of NCM was a straight line along the major axis of field
L2a. The dorsal, ventral and caudal boundaries of
NCM were naturally given by the ventricular zone. An
outline is then defined as the smallest convex polygon
(convex hull) that includes all objects recognized as
objects in the tissue within the drawn perimeter (Cor-
men et al., 1994). An algorithm based on this definition
is implemented to compute the outline of each section'.
This procedure works very well for NCM because it has
a convex shape; the generalization to other brain areas
with convoluted boundaries like the cerebellum is cer-
tainly not straightforward, but we think it could be
based on the same idea.

2.3.5. Definition of a standardized outline of the region
of interest

To define a standardized outline which can be used
as an anatomical reference for comparison across maps,
we perform the following.

1. Determine the outlines of the region of interest from
a large number of animals, ideally the total popula-
tion to be included in a particular study or compari-
son. Each individual outline is calculated as
described in Section 2.3.4.

2. Align the individual outlines relative to each other
using a Monte Carlo algorithm (Press et al., 1994)
that minimizes local misalignments and separation
of the outlines. The energy function penalizes the
distance d,,, and cross product (maximal for orthog-
onal segments) of nearest-neighbor segments of the
matching convex hulls, and integrates these mea-
sures along the contour. The cross product, being
proportional to the length of the segments, also
weighs the extent of the misalignment. A term mea-
suring the variance of the distance between nearest-
neighbor segments is also included in the energy
function, whose precise expression is:

&= [001<dnn >\/ <dﬁn> - <dnn >2] Z|Vl X v2|

where () is the average along the contour, and v,, v,
the nearest neighbors segments in each contour.

" The code to compute the convex hull of a set of points was
written by Ken Clarkson, and can be downloaded from http: //
netlib.bell-labs.com/netlib/voronoi. 1

3. Compute the standardized outline as the average of
all outlines.

2.3.6. Scaling of maps

Individual maps are automatically aligned and scaled
with respect to the standardized outline. For this, each
map is:

1. Uniformly scaled so that its area matches that of the
standardized outline;

2. Rotated and moved along the horizontal and verti-
cal axis so as to align its orientation to the standard-
ized outline, using the alignment algorithm
described in Section 2.3.5;

3. Scaled independently along x and y to minimize the
variance of its outline respect to the standardized
outline (Fig. 6). The variance is measured comput-
ing the distance between nearest-neighbor segments
of the outline and the standardized outline.

2.4. Representation of the data

2.4.1. Classification of cells according to labeling
intensities

In order to simultaneously represent the spatial dis-
tribution and the labeling intensity of recognized cells,
we classify the cells into discrete bins according to their
labeling intensities. In order to obtain a normalized
classification so that maps can be compared, the total
population of cells in a particular study should be
included. We find that a classification into three bins
(low, medium and high labeling intensities) is a conve-
nient compromise between content and simplicity of
presentation. The bins are defined so that each contains
a third of the total cell population, i.e., a third of all the
cells mapped, across sections. Each bin is then assigned
a color; blue, green and red correspond to low, medium
and high labeling.

2.4.2. Computation of stimulus-elicited averaging maps

The scaling and alignment of the sections with re-
spect to the standardized outline is performed indepen-
dently for each one, and only then the four maps
corresponding to each stimulus group are averaged into
a single response map. To generate average density
maps, the set of points within each map is convolved
with a gaussian kernel of 50 um radius and the maps
from all animals presented with the same stimulus are
averaged. The three bins of labeling intensity are pro-
cessed in parallel, so that three density maps—one for
each bin—are independently generated per animal and
finally superposed. The density of labeled cells (number
of cells/um?) within each bin is represented by color
brightness. The superposition of color-coded maps re-
sults in mixed populations of cells, which are repre-
sented in the average density maps by a myriad of hues
derived from combinations of the blue, green and red
bins (Fig. 7B,C).
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Fig. 5. Number of cells per intensity bin recognized by the system (hollow bars) and false negatives relative to exhaustive search by human
observers (light shade). The dark shade indicates false negatives with intensities above 1.2 relative to background. The number of false negatives
is less than 7% of the total number of cells with intensity above 1.2, although it is 14% relative to the first bin and decreases very fast for higher
intensities. The arrows indicate the chosen intensity cut-off (right) and the lowest reliable cut-off (left).

For each particular stimulus in our study (a total of
20), one section from each of the four different animals
was mapped and included in the average map. The only
criterion to select a section was its position relative to the
mid-line (1100-1300 pm), so that all sections were
comparable across animals. We decided to apply a lower
intensity cut-off, so that only cells with labeling above
1.4 times the background labeling were considered. This
strategy proved to be satisfactory for the discrimination
of the stimulus-elicited maps; however, we will discuss in
Section 3 the possibility of lowering the cut-off while
preserving a reasonable reliability in nuclei recognition.

2.4.3. Testing the reliability of the system

To assess the reliability of the recognition procedure,
we tested it in comparison with trained experimentalists.
A selected test region of a NCM section was scanned by
the system to recognize cells labeled above the back-
ground. On the same region, an exhaustive search of
labeled cells was performed, using a consensus criterion
between two subjects. The result of this search was then
compared with the automatic procedure.

To test the reliability of the scaling and alignment
procedure, we computed the ratios of the areas defined
by individual NCM maps to that of the standardized
NCM outline. In addition, we superimposed the outlines
defined by all the individual maps used for the determi-
nation of the standardized NCM outline.

3. Results

The results reported here were obtained from the
group of 80 animals used to develop the system.

To perform the test of reliability of nuclei recognition,
we selected an area of approximately 450 pm x 900 um
in a section of an animal stimulated with song. The
system identified 355 nuclei with labeling above back-
ground in that region. The comparison with the exhaus-
tive search is as follows.

o In 10 cases, the system misrecognized two closely
opposed cells, connected by an isthmus of high
labeling, as a unique cell.

e The system failed to recognize 96 cells (false nega-
tives); all of these false negatives represent cells with
low labeling intensity, as can be appreciated in Fig.
5. The reliability within each bin is high for relative
labeling above 1.2 (86%) and increases to almost
99% for intensities above 1.4. This is consistent with
the 20% (STD) variability of the background label-
ing that we have observed across all sections, i.e. the
choice of a unique background labeling per section
precludes the recognition of weak cells.

As mentioned in Section 2.4.2, for our particular study,

we set the lower cut-off for cell labeling intensity at 1.4

above background, which represents a reliability of

99%; nevertheless, the test shows that the cut-off could

be confidently lowered to 1.2.
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Fig. 6. (A) Scheme of alignment and scaling algorithm. The top part
shows how the standardized NCM outline is extracted from the
superposition of several (80) NCM outlines, after their alignment and
scaling. The bottom part shows how individual maps are aligned and
scaled respect to the standardized NCM outline. (B) Areas of individ-
ual outlines after alignment and scaling are plotted relative to the
area of the standardized NCM outline.

The efficacy of the scaling and alignment procedure
can be appreciated in Fig. 6. Panel A shows how close
individual outlines are aligned relative to the standard-
ized outline after the procedure. Panel B shows that the
areas of individual outlines approximates that of the
standardized outline.

The total population of labeled cells observed in the
80 animals was 36 000. The ranges of labeling intensity
to equally populate the three intensity bins were 1.40—
1.62 (blue), 1.62—1.77 (green), and 1.77-2.68 (red). Fig.
7C depicts how the maps of the three bins of labeling
intensity were superimposed so as to generate an aver-
age density map of the four animals stimulated with a
whole song. In this final map, therefore, numbers of
labeled nuclei are represented within three ranges of
activation. It should be stressed that density maps do not
represent pixels or densitometric unit per area, but
rather, absolute numbers of labeled nuclei per unit area.
Note that for the particular stimulus in Fig. 7C, a whole
song, the three intensity populations are not balanced,
because the song elicits a strong response, resulting in a
predominance of the red bin (high expression level). As
detailed elsewhere (Ribeiro et al., 1998), a classification
of the cell nuclei population into three discrete bins of
labeling intensity provides essential information for the
discrimination of ZENK expression patterns resulting
from different auditory stimuli.

Finally, the interanimal variability in terms of cell
labeling intensities was small within each stimulus group.
This is shown in Fig. 7A, which depicts the distribution
of labeling intensities for the group of animals stimulated
with a whole song. The same is also true for several other
auditory stimuli, as reported elsewhere (Ribeiro et al.,
1998). Thus, different auditory stimuli elicit distinct
labeling distributions, reflecting the specificity of NCM
responsiveness; in consequence, the different stimuli can
be rather easily discriminated by their characteristic
profiles.

4. Discussion

We have described here a procedure that allows us to
perform automated recognition and quantification of
labeled nuclei using ICC. We would like to discuss two
separate classes of problems that we had to deal with:
quantification of ICC labeling and automated recogni-
tion of labeled nuclei.

4.1. Quantification of ICC labeling

We used an ICC protocol based on the deposition of
DAB, a chromophore that provides stable staining under
bright field illumination, and can therefore be examined
repeatedly over extended periods of time (Kugler, 1990).

Fig. 7. (A) Distribution of ZENK-labeled cells resulting from presentation of a whole song. The central line indicates mean values of the number
of cells with a given labeling intensity, while the upper and lower lines represent the variance ( + S.E.M.). The shaded area indicate the lower
cut-off adopted; the colored areas indicate the color-coding ranges according to three bins of labeling intensities (blue, 1.4—1.62; green, 1.62—1.77;
red, 1.77-2.68; for the determination of these values, see Section 3). (B) The key on the left shows how brightness in each of the three color-coded
ranges reflects cell density; the key on the right indicates how mixed cell populations result in various color mixtures. (C) Map of ZENK
expression in NCM of canary resulting from stimulation with a whole song. The separate density maps for each of the three labeling intensity bins
are shown on the left. The map resulting from the superposition of the three partial maps is shown on the right.
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Due to the non-linearity of DAB deposition, one can-
not directly infer the precise protein content of labeled
nuclei. For classifying nuclei into discrete bins of label-
ing intensities, however, the only assumption needed is
that the staining levels be monotonic with the amount
of protein. Alternatively, fluorescent detection systems
could minimize the non-linearity issue, but present their
intrinsic disadvantages, particularly the short-lived light
emission after ultraviolet excitation. Irrespective of the
detection system employed, quantification of ICC label-
ing is not a trivial task, and a substantial amount of
work is required to solve the issue of variability. We
have identified and addressed four main variability
sources, which we discuss in detail.

4.1.1. Labeling variability

It is well known that local differences in tissue perfu-
sion and fixation, as well as access to reagents during
the ICC procedure, can have a strong influence on ICC
staining levels. It is therefore essential to minimize these
factors by reacting all sections in parallel, with the same
batch of reagents. Any remaining differences have to be
dealt with by using a normalization procedure. We
have previously described that background labeling in
our system is independent of specific cell labeling, as it
persists when the primary antibody is pre-absorbed
with its specific antigen, or even when incubation with
the primary antibody is omitted from the ICC proce-
dure (Mello and Ribeiro, 1998). We have therefore
normalized cell labeling values to that of the back-
ground labeling. An alternative procedure commonly
adopted to address labeling variability consists of nor-
malizing labeling respective to a different brain area.
This has the drawback of potentially accentuating vari-
ations in staining due to different access to perfused
fixative, different position in the reaction vial, and
differences in the response of different brain areas to
the experimental condition (in our case, song stimula-
tion). Our mapping procedure allows us to compute the
precise value of background labeling, and therefore to
normalize labeling to the background within the region
mapped. To our minds, this is a more rigorous way of
dealing with the issue of labeling variability.

4.1.2. Human error in the identification of labeled cells

A major concern we had at the beginning of our
work was the unreliability of humans to map a very
large number of cells, over long periods of time (weeks
to months), while using a consistent set of criteria. Our
computerized system applies a single set of criteria for
cell recognition to all maps, allowing for the compari-
son of animals presented with different stimuli, or
mapped at different times.

4.1.3. Histological variability
Even when extreme care is taken to cut the brains

from different individuals in the same anatomical plane,
it is inevitable that some variability results in section
size, shape and orientation. Any attempt to compare
sections across different animals must deal with this
issue. Our scaling and alignment procedure in reference
to a standardized outline of the region of interest allows
us to normalize the entire data set in terms of size,
shape and orientation of sections. Notice that the al-
gorithm used for alignment and scaling does not de-
pend on the ICC labeling patterns, but rather takes into
account only the anatomical boundaries of the region
of interest; this precludes the introduction of bias in the
procedure, due to differential tissue responsiveness.

4.1.4. Intrinsic interanimal variability

After minimizing or eliminating the main extrinsic
sources of variability, one still has to face the inter-indi-
vidual variability of responses within the region of
interest. We dealt with this issue by averaging the data
of all animals per stimulus group. As the experimental
procedure requires that the animal be killed, there is a
limitation in the number of stimuli that can be reason-
ably compared in a single study. This sets the limits of
applicability of the ZENK mapping procedure for
physiological studies, since a minimum number of ani-
mals must be used per condition or stimulus to guaran-
tee a meaningful interpretation. In the case of auditory
responses in NCM, including four animals per group is
sufficient to grant statistical confidence to the differ-
ences observed across groups (Ribeiro et al., 1998).

4.2. Automated detection of labeled nuclei

The automated detection of ICC labeled nuclei in our
system is an iterative process. For a first and rough
detection of labeled objects in the tissue, we employ a
low cutoff for the ‘laplacian’, or gradient of labeling
intensity, so that labeled nuclei as well as similarly
stained debris are included. This is more efficient than
using directly the value of labeling intensity, as it
eliminates artifactual objects with high labeling levels
but fuzzy boundaries. Next, a set of restrictive filters is
used to refine the initial selection. Finally, a more
stringent cut-off for labeling intensities is applied, that
takes into account the background staining variance. It
should be pointed out that no single criterion is enough
for a reasonable recognition of labeled cells; when
applied in conjunction; however, the series of filters is
highly efficient. Interestingly, the development of the
system itself consisted of an initial educated guess of
what should be the different filters and their values;
with successive trials, the filter values became gradually
more stringent.

Our automated system reliably recognizes 80—90% of
the cells identified by trained human observers that
have labeling intensities 20% above the background.
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Even though tissue artifacts affect the recognition to a
minor extent, the main source of discrepancies are
weakly labeled cells. Human observers have particular
difficulty in consistently identifying cells with low label-
ing and deciding how they compare with tissue back-
ground; this issue is easily solved by the automated
system. On the other hand, the system has some
difficulties in identifying weakly labeled cells where the
labeling is spatially restricted to a small domain within
the nucleus, or in separating closely opposed cells. The
net result of the discrepancies between the human ob-
servers and the automated mapping system is an under-
estimation of the number of labeled nuclei by the latter.
There are, however, considerable advantages of the
automated system that constitute a satisfactory trade-
off, including:
e criteria consistency,
e accurate spatial localization,
e quantification of labeling intensities, and
e the ability to quickly process massive amounts of
data.

Attesting to the usefulness of the system, the infor-
mation it generated for the mapping of the ZENK
responses in NCM to various auditory stimuli was
enough to provide for a full classification of the result-
ing ZENK expression patterns (Ribeiro et al., 1998).

Regarding the applicability of this method to areas
with a more complex anatomy, we wish to discuss two
different aspects. First, as already mentioned, NCM is a
convex area, which helped in the computation of the
boundary and, subsequently, in the comparison and
averaging of sections from different animals. Convo-
luted boundaries, like that of the cerebellum, cannot be
naturally approximated by the convex hull of the tissue.
There are, nevertheless, formal extensions of the convex
hull, like the «-shape (Edelsbrunner et al., 1983), which
could be implemented in dealing with non-convex out-
lines. The second aspect is the reconstruction of the
three-dimensional anatomy of an entire brain area of a
single animal, and eventually the comparison of this 3D
structure across animals. This is a more difficult task,
given the lack of guidelines as to how successive sec-
tions should be stacked. For particular brain areas, the
problem could be attacked on the basis of prior knowl-
edge on the anatomy. This problem notwithstanding,
our method can provide the basis for any attempt
towards the reconstruction of entire neuronal networks
undergoing genomic activity in the brain.
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