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Abstract

In 1949, Donald Hebb postulated that assemblies of synchronously activated neurons are the elementary units of
information processing in the brain. Despite being one of the most influential theories in neuroscience, Hebb’s cell assembly
hypothesis only started to become testable in the past two decades due to technological advances. However, while the
technology for the simultaneous recording of large neuronal populations undergoes fast development, there is still a
paucity of analytical methods that can properly detect and track the activity of cell assemblies. Here we describe a principal
component-based method that is able to (1) identify all cell assemblies present in the neuronal population investigated, (2)
determine the number of neurons involved in ensemble activity, (3) specify the precise identity of the neurons pertaining to
each cell assembly, and (4) unravel the time course of the individual activity of multiple assemblies. Application of the
method to multielectrode recordings of awake and behaving rats revealed that assemblies detected in the cerebral cortex
and hippocampus typically contain overlapping neurons. The results indicate that the PCA method presented here is able to
properly detect, track and specify neuronal assemblies, irrespective of overlapping membership.
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Introduction

Hebb’s seminal work constitutes a landmark of modern

neuroscience [1]. His theory proposes detailed neural mecha-

nisms for the processing and learning of information, from the

molecular, cellular and circuit levels to the emergence of complex

cognitive functions. According to Hebb’s hypothesis, the

recurrent co-activation of a subset of neurons would increase

the efficiency of their connections, leading to the formation of a

cell assembly. Therefore, synchronization of spike times would

play a critical role in the creation of new assemblies [2,3,4,5,6].

In this context, a cell assembly is defined as a group of neurons

that fire together and wire together. Due to the increased strength

of the connections linking members of the assembly, activation of

some of its neurons would trigger the activation of the entire

neuronal group, leading to pattern completion [7,8,9]. Hebb

also postulated that the activation of a cell assembly can lead to

the sequential activation of other assemblies, a phenomenon he

termed as phase-sequences, and proposed to underlie

complex brain computations (see also [10,11,12]). In line with

this view, neocortical and hippocampal information has been

shown to be widely distributed over neuronal populations, rather

than encoded by the activity of highly specialized cells

[13,14,15,16,17,18,19].

The actual investigation of Hebbian cell assemblies and their

dynamics is only beginning to be possible, thanks to major

technological advances that allow the simultaneous and chronic

recording of large neuronal populations [20,21,22]. In parallel

with these advances, mathematical methods have been developed

to address Hebb’s hypotheses in experimental data, such as

template matching of neuronal population activity [23,24,25] and

the detection of precise multi-neuron firing [26,27,28,29,30].

Powerful methods for the detection of neuronal co-activation

based on Principal Component Analysis (PCA) were also described

[31,32,33], which have recently been extended to incorporate

strong statistical support [34]. The latter framework is able to

reliably detect the presence of cell assemblies and to assess

ensemble activation with high temporal resolution based on the

projection of network activity on the principal components (PCs)

of the neuronal correlation matrix (see next section for a

definition).

Despite its successful initial applications [32,35,36], the PCA-

based method presents some limitations. First, it does not identify

which specific neurons compose the detected assemblies. In

addition, as demonstrated in the present work, the use of

individual PCs in order to represent assembly activity patterns is

misleading when there are neurons shared by different assemblies.

As a consequence, in these cases the projection of neuronal activity
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based on PCs does not match the actual time course of individual

assembly activation. Since it is currently believed that most, if not

all, neocortical and hippocampal neurons take part in multiple

assemblies (see Discussion), such limitation is an important one.

To address these gaps, we present here an exploration of some

of the key properties of the PCA method for assembly detection,

and propose critical modifications of the current framework. First,

we show that the number of assemblies and assembly neurons can

be computed from the analysis of the eigenvalues of the neuronal

correlation matrix. We then show that the subspace spanned by

the PCs can reveal which neurons compose the detected

assemblies. We go on to show how the time course of the activity

of individual assemblies can then be estimated, even when

different cell assemblies have a subset of common neurons.

Finally, we show that our method can properly detect, track and

specify the neuronal membership of neocortical and hippocampal

assemblies recorded from behaving rats.

Results

First we briefly outline the general framework as proposed in

[31,32,34,35]. Figure 1A shows an example of neuronal

population activity represented by means of a standard spike

rastergram plot, in which each mark denotes the firing of an action

potential by a neuron (the y-axis indicates the neuron labels). The

procedure begins by binning the spike rastergram into non-

overlapping, short time windows (referred to as bins) and counting

the number of spikes in each bin, as indicated in Figure 1B. In this

way, the rows of the resulting matrix represent neuronal units, and

the columns represent the time bins. More specifically, the element

aij denotes the number of spikes of the ith neuron in the jth bin

(Figure 1B inset). For the sake of generality, in this work we use the

‘‘bin number’’ (‘‘bin #’’) as our arbitrary unit of time. Next, the

binned spike activity is z-scored in order to normalize the spike

rate of each neuron (Figure 1C). Thus, the rows of the normalized

matrix are vectors with zero mean and unit variance. The

autocorrelation matrix of the normalized spike activity is then

computed (Figure 1D); each entry ij of the autocorrelation matrix

is the Pearson correlation coefficient (r) between the rows i and j of

the matrix shown in Figure 1C (i.e., a correlation between two

spike rate vectors).

The next steps of the method involve the computation of the

eigenvalues of the autocorrelation matrix (Figure 1E) and the

associated eigenvectors (Figure 1F), which in this context are

referred to as Principal Components (PCs). Finally, the PCs

associated with significant eigenvalues (see below) are used to track

the activity of cell assemblies in each time bin (Figure 2A).

An important question is to know when the correlation

coefficient of the spike activity of two neurons can be considered

statistically significant for a given dataset. To this end, a statistical

threshold that separates non-significant correlations from values

above chance is needed. Instead of using exhaustive surrogate

methods [37,38,39,40,41,42], Peyrache et al. elegantly addressed

this problem by analyzing the distribution of the eigenvalues of the

autocorrelation matrix [34,35]. From random matrix theory, it

can be demonstrated that the eigenvalues of an autocorrelation

matrix computed from a matrix with statistically independent rows

(in our case, neurons with independent activity) follow the so-

called Marčenko-Pastur distribution [43]. Since the goal is to

identify ensemble activity, i.e. groups of neurons with correlated

firing, the theoretical upper limit provided by the Marčenko-

Pastur distribution can be used as statistical threshold. Thus, if

there are groups of significantly correlated neurons in the

population recorded, some eigenvalues will lie above this statistical

threshold. Furthermore, the PCs associated with significant

eigenvalues can be used to track assembly activity. This is

accomplished by projecting the normalized spike activity matrix

using projector operators computed from the PCs, resulting in a

unidimensional signal representing the time series of ensemble

activity.

Using simulated data, we show in Figure 2A that the activation

time course computed as described above is able to represent the

activity of specific cell assemblies in some cases. However, as

shown in Figure 2B, this approach is unable to separate the activity

of individual assemblies when the neuronal population is

composed of assemblies with overlapping cells. Note in Figure 2A

that the estimated time courses of the activation strength

correspond to increases of firing rate of specific subsets of neurons,

as desired. However, for the case depicted in Figure 2B, the

projection of population activity using the PCs does not separate

the activity of the two cell assemblies. This constitutes an

important limitation since the existence of assemblies with shared

neurons is expected (see Discussion).

In the following sections we explore in more detail the general

characteristics of this method, and propose modifications to allow

tracking the activity of individual assemblies even when they share

neurons. We also show that it is possible to precisely identify the

neurons participating in each cell assembly.

Marčenko-Pastur distribution and the null hypothesis of
independent neuronal activity

We start by exploring example cases of networks where no

organized neuronal activity is present, that is, when there is no cell

assembly in the network. As already introduced in the previous

section, the eigenvalues of an autocorrelation matrix computed

from a matrix with independent rows follow the Marčenko-Pastur

distribution (see Methods for its formula). In order to illustrate this

prediction, we show in Figure 3A–C three examples of random

network activity differing in the number of neurons and time

windows analyzed (i.e., the total number of bins). Each neuron is

modeled as an independent Poissonian process (mean = 1 spike/

bin). The predicted distribution of eigenvalues is shown below the

corresponding network along with its empirical eigenvalues

histogram. As expected, the actual eigenvalues follow the Mar-

čenko-Pastur distribution. Note that the theoretical distribution has

lower variance for greater values of the ratio q = Nbins/Nneurons.

We next performed a systematic parametric study of matrices

with independent rows to investigate this property further. To this

end, we defined ‘‘accuracy’’ as the percentage of eigenvalues that

lie within theoretical bounds, that is, 100% accuracy means that all

eigenvalues are within the limits predicted by the Marčenko-Pastur

distribution. In other words, accuracy assesses the performance of

the use of the theoretical bounds in determining the absence of cell

assemblies in the network.

Figure 3D shows accuracy as a function of network size and

total number of bins. Notice that, for a given network size, higher

levels of accuracy are achieved with a higher number of time bins.

In fact, as better seen in Figure 3E, accuracy is highly dependent

on the condition q = Nbins/Nneurons.1, i.e., the number of analyzed

bins has to be greater than the number of neurons in the network.

Figure 3F displays the results shown in Figure 3D for three specific

network sizes. Similar results were obtained for different firing

rates and also for the more realistic case in which the mean firing

rate of each neuron differs from the mean rate of other neurons

(data not shown). This latter result was expected since the firing

rates are normalized.

Overall, we conclude that the theoretical limits predicted by the

Marcenko-Pastur distribution can be used as the null hypothesis of

Detecting Cell Assemblies by PCA
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independent neuronal activity, as long as the number of bins

analyzed is higher than the number of neurons in the network. In

the next section, we show how we can also use this theoretical

distribution to determine the precise number of cell assemblies in

the network.

Eigenvalues outside theoretical bounds mark the number
of cell assemblies and assembly neurons

We have shown above that eigenvalues of autocorrelation

matrices computed from independent neuronal activity remain

Figure 1. Original method overview. (A) Raster plot activity. Each row represents a neuron; marks denote an action potential and x-axis
represents time. Panel inset shows the binning procedure into non-overlapping time windows. (B) Binned spike activity matrix obtained from raster
plot in A. Each element is the count of the number of spikes in a given bin. (C) Z-scored binned spike activity matrix obtained by mean and variance
normalization of the matrix in B. (D) Autocorrelation matrix (ACM) of the normalized binned spike activity in C. Each element denotes the linear
correlation between two neurons. The main diagonal is set to zero for clearer visualization. (E) Eigenvalue histogram of the ACM shown in D. (F)
Principal components (PCs) of the ACM, which are the eigenvectors associated with the eigenvalues shown in E. PCs are ordered in respect to their
eigenvalues, i.e., the PC1 is associated with the highest eigenvalue and so on.
doi:10.1371/journal.pone.0020996.g001
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within predicted limits as long as the condition q.1 is satisfied.

Now we go further to show that the number of eigenvalues above

the theoretical upper limit not only indicates the presence of

ensemble activity, but it is also an accurate estimation of the

number of cell assemblies in the network.

In Figure 4A two examples of neuronal network activity are

shown. Neurons were modeled as Poissonian processes as in

Figure 3, but, in addition, simulated assembly activity was added to

the network. Assembly activations were modeled as an increase of

the firing rates of a subset of neurons in specific bins. More

specifically, in these ‘‘activation bins’’, neurons were set to fire

between 6 and 9 spikes, uniformly distributed. Both examples have

32 neurons and 8000 time bins. In each example, the mean firing

rates (over all time bins) of cell assembly neurons were not

necessarily higher than those of the other neurons in the network

(Figure 4A, leftmost panels). In other words, the specific bins of

assembly activation did not lead to a considerable net change in the

average spike frequency of these neurons. In Figure 4A we depict a

period of 150 bins in which assembly activations can be seen

(second panels from left), along with the autocorrelation matrix of

the simulated network (third panels from left); the theoretical

eigenvalue distribution and the empirical eigenvalue histogram are

also shown (top and bottom rightmost panels, respectively).

In the first example, a cell assembly with four neurons (neurons

#7, #8, #9 and #10) is present in the network. Neurons have

independent activity, with the exception of the cell assembly

neurons that have higher firing rate in 0.5% of the bins randomly

selected (i.e., the activation bins; cell assembly neurons have

independent activity in the other bins). A simple visual inspection

of the autocorrelation matrix already reveals higher correlations

among cell assembly neurons. Importantly, notice that one

eigenvalue of the empirical distribution lies above the upper limit

predicted for independent neuronal activity in this example. In the

second example, three cell assemblies were added to the network.

Notice that three eigenvalues fall above the theoretical upper limit

in this case. These results therefore suggest that the number of

eigenvalues above the Marcenko-Pastur distribution mark the

number of cell assemblies in the network. We next performed a

parametric analysis to investigate in more detail such property.

In Figure 4B, we analyze networks with different numbers of

assemblies and different firing rates during activation bins

(‘‘activation firing rate’’). We simulated networks with 40 neurons

(mean spike rate = 1 spike/bin) and 8000 time bins; assemblies

were composed by 4 neurons and set to be active in 0.5% of the

bins. Each data point in Figure 4B corresponds to a network with a

given level of activation firing rate (labeled by colors) and number

of assemblies (varying from 1 to 10, as indicated in the x-axis). The

number of eigenvalues above the theoretical upper limit is plotted

as a function of the number of assemblies for different activation

firing rates. Note that a perfect match between the number of

eigenvalues above the upper limit and the number of assemblies in

the network is indicated by b= 1 in the linear fit y =a+bx. We

found that the number of eigenvalues above the upper limit

underestimated the number of assemblies in the network (b,1) in

cases in which assembly activations had a firing rate below 5; on

the other hand, all cases with activation firing rate equal or above

5 presented a perfect match (b= 1). Taken together, these results

suggest that a minimal activation firing rate is required for the

proper detection of the number of assemblies.

Our next step was to conduct exhaustive simulations to

investigate the requirements for reaching the criterion b= 1.

Figure 4C shows the minimal assembly activation firing rate

required to achieve such criterion as a function of background firing

rate and number of analyzed bins. In the left panel, the minimal

activation firing rate is shown in absolute values, while in the right

panel it is expressed as a ratio relative to the background firing rate.

Figure 2. PCs do not always isolate the activity of different cell assemblies. (A) Top panel shows a binned spike activity matrix with 20
neurons (modeled as Poissonian processes) and 8000 time bins. Two cell assemblies were simulated in the network, each having four neurons
(Assembly 1 neurons: #6, #7, #8, #9; Assembly 2 neurons: #12, #13, #14, #15). Neurons in the same assembly were set to fire together six times
above their mean firing rate at 0.5% of the bins. Bottom panels show the estimated time course of ensemble activity obtained by the projection of
the binned spike activity using the projector operator defined as the outer product of the PCs (see Methods). Note that PC1 marks the activations of
Assembly 2, and PC2 marks the activations of Assembly 1. (B) Same as A, but with assemblies sharing neurons (Assembly 1 neurons: #5, #6, #7, #8,
#9; Assembly 2 neurons: #8, #9, #10, #11, #12). Note that for this example this framework fails to isolate the activity of individual assemblies.
doi:10.1371/journal.pone.0020996.g002
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Note that for a higher number of bins analyzed, a lower activation

firing rate is required for a perfect match between the number of

assemblies and of the eigenvalues above the upper limit. Figure 4D

illustrates the dependence of b= 1 on the number of assembly

activation events. We studied network activities with 4000

(Figure 4D left panel) and 8000 (Figure 4D right panel) bins for

four different ‘‘activation frequencies’’ (number of activation bins/

number of time bins), and we show the minimal activation firing

rate for b= 1 as a function of background activity. Notice that, as

the activation frequency gets higher, lower assembly activation

firing rates are sufficient for b= 1. Overall, these simulations show

that the number of eigenvalues above the theoretical bound is

related to the number of assemblies present in the network. The

efficiency of such estimation depends on how many bins the

assembly neurons are correlated and how high this correlation is.

Next, we studied the eigenvalues that fall below the lower

theoretical bound. Inspection of Figure 4A suggests that the

number of eigenvalues below the predicted limit for independent

activity increases when more assemblies are added to the network.

In Figure 5, we show that, in fact, the total number of eigenvalues

outside the theoretical distribution (below or above) is a good

estimation of the total number of neurons involved in ensemble

activity. More specifically, in Figure 5A we show three examples of

networks with 40 simulated neurons and 8000 analyzed bins. A

cell assembly was added to the network (active in 0.5% of the bins)

and the number of neurons composing the ensemble was varied (4,

8 and 12 assembly neurons from top to bottom panels). The

eigenvalue histograms shown in Figure 5A indicate that the

number of eigenvalues below the predicted limit increases with

increasing the number of cell assembly neurons; in fact, for the 3

Figure 3. Eigenvalues of autocorrelation matrices derived from the activity of independent neurons fall within theoretical bounds.
(A) Top Panel: Binned spiking activity of 20 independent neurons. Each neuron was simulated as following a Poisson process (mean = 1 spike/bin).
Middle Panel: Theoretical Marčenko-Pastur distribution. Bottom Panel: Histogram of eigenvalues obtained from the autocorrelation matrix computed
from the neuronal activity shown in the top panel. (B,C) Similar panels as in A but for network activities presenting a greater number of neurons (B)
or bins (C). Notice that the eigenvalues follow the Marčenko-Pastur distribution in all cases, and that the width of the predicted distribution is
dependent on the ratio Nneurons/Nbins, where Nneurons = number of neurons and Nbins = number of bins. (D) Percentage of eigenvalues falling within
Marčenko-Pastur theoretical bounds as a function of network size and number of time bins. For each parameter set, neurons were simulated as
independent Poisson processes (mean = 1 spike/bin). Values represent the mean over 20 simulations. (E) Top-down view of the surface in D. Notice
that virtually 100% accuracy occurs when Nbins.Nneurons. Dashed white line denotes Nbins = Nneurons. (F) Transections of the surface in D obtained for
three different network sizes.
doi:10.1371/journal.pone.0020996.g003
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examples, the total number of eigenvalues outside the theoretical

distribution perfectly matched the number of cell assembly

neurons. In Figure 5B we show that this property depends on

the assembly activation firing rate. We again used exhaustive

simulations in order to assess the robustness of this estimation.

Figure 5C shows the number of eigenvalues outside predicted

limits as a function of assembly activation firing rate and analyzed

bins; the result is expressed as a ratio of the number of the neurons

composing the assembly (# outer eigenvalues/# assembly

neurons). Note that a virtually perfect estimation (ratio = 1) is

approached as the activation firing rate and the number of

analyzed bins increase. Figure 5D shows the minimal activation

firing rate for ratio = 1 as a function of the number of analyzed

bins. We show this relation for different assembly activation

frequencies and for different assembly sizes. While the estimation

does not depend significantly on the number of neurons in the

assembly, it is improved if the assembly is active in more bins.

Similar findings were obtained in networks composed by multiple

assemblies, even when some neurons were shared by two or more

assemblies (simulations not shown, but see Figures 6 and 7).

Figure 4. Eigenvalues above theoretical bound mark the number of cell assemblies. (A) Top: (Left panels) Shown are binned spiking
activity of a network composed of 32 neurons (second panel), along with the average firing rate of each neuron (first panel). Total simulation time
was 8000 bins; neurons were modeled as possessing a Poissonian firing rate (mean = 1 spike/bin). In order to simulate a cell assembly, we set a group
of neurons to activate simultaneously at 0.5% of the bins (firing rate within activation events = 6–9 spikes/bin). To facilitate visual inspection,
neighbor neurons were chosen as composing the cell assembly (neurons #7, #8, #9, #10; dashed circle). (Middle Panel) Network correlation matrix.
Notice a cluster of correlated activity corresponding to the cell assembly. (Right Panels) Theoretical eigenvalues distribution for independent
neuronal activity (top panel), and the eigenvalues histogram computed from the simulated network (bottom panel). Notice that 1 eigenvalue lies
above the theoretical upper limit predicted for random activity. Bottom: Same as above, but for a network presenting three cells assemblies (Cell
assembly 1: neurons #3, #4, #5, #6; Cell assembly 2: #10, #11, #12, #13; Cell assembly 3: neurons #26, #27, #28, #29). Notice that three
eigenvalues lie above the theoretical bound. (B) Number of eigenvalues above the theoretical bound as a function of the number of cell assemblies
in the network for different values of firing rate during cell assembly activation events. Networks were composed of 40 neurons; neurons were
simulated as Poissonian processes (background mean = 1 spike/bin). Total simulation time was 8000 bins; assembly activation frequency was set to
0.5% of the bins. Each cell assembly was composed by 4 neurons (non-overlapping). Colored lines denote the linear fit y =a+bx for each activation
firing rate studied. Notice that the higher the firing rate within activation bins, the higher the slope coefficient (b). If the firing rate is high enough, b
equals 1, which characterizes the regimes in which the number of eigenvalues perfectly corresponds to the number of cell assemblies. Each data
point represents a single simulation result. (C) Pseudocolors denote the minimal firing rate within activation bins leading to b equal to 1 as a function
of the background mean firing rate (x-axis) and total number of time bins (y-axis). Results are expressed as absolute values (left) and as a ratio relative
to the background firing rate (right). Assembly activation frequency was set to 0.5% of the bins. Networks were composed by 40 neurons, and each
cell assembly was composed by 10 neurons. For each parameter set, values represent the mean over 20 simulations. (D) Left panel: Black line
represents a transection of the result in C for network activities of 4000 time-bins. Other colored lines represent equivalent results obtained for
different frequencies of cell assembly activation, as labeled. Notice that the higher the frequency of cell assembly activation, the lower the minimal
firing rate leading to b equal to 1. Colored dashed lines represent the same result but as a ratio to the background firing rate. Right panel: Similar
results as before, but for a network activity composed of 8000 time-bins.
doi:10.1371/journal.pone.0020996.g004
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In conclusion, we observed that the empirical distribution of

eigenvalues not only indicates the presence of ensemble activity in

the network, but can also be used to estimate the number of cell

assemblies present in the network as well as the number of neurons

involved in ensemble activity. In the next section we show how this

information can be used to identify which neurons belong to each

detected assembly.

Identification of cell assemblies and time course of their
activation

So far we have shown that eigenvalues of autocorrelation

matrices that are higher than a well-established statistical threshold

have a strong relation with subsets of correlated neurons. Since

these eigenvalues are by definition associated with PCs, it is

reasonable to expect that these vectors also carry information

about ensemble activity. In order to show how they can be used to

identify assemblies in a network (in terms of which neurons

compose them) we created a simulated network as an illustrative

example. Neurons were again modeled as Poissonian processes,

but with different mean spike rates (uniformly distributed between

one and five spikes/bin). In addition, we set every neuron to fire 6

times above their mean rate at 0.5% of the bins. Two groups of

neurons (cell assembly 1 neurons: #5, #15, #21; cell assembly 2

neurons: #12, #23) had these firing peaks at the same bins,

Figure 5. The number of eigenvalues lying outside the theoretical distribution limits corresponds to the number of cell assembly
neurons. (A) Shown are the binned spiking activity matrices of networks composed of 40 neurons (left panels), along with the predicted eigenvalues
distribution for independent neuronal activity (top right panel) and the actual eigenvalue histogram (bottom right panels). Total simulation time was
8000 bins; neurons were modeled as possessing a Poissonian firing rate (mean = 1 spike/bin). The 3 cases depicted differ in the number of neurons
that compose the cell assembly. Notice that, for all cases, the number of eigenvalues outside the theoretical limits (dashed lines) matches the number
of neurons in the cell assembly. (B) Ratio of the number of eigenvalues outside theoretical limits to the number of cell assembly neurons (ratio = 1
means that the number of significant eigenvalues perfectly corresponds to the number of cell assembly neurons). Different data points denote the
mean over 20 simulations for different number of cell assembly neurons (x-axis) and activation firing rates (colored lines), as labeled. Networks were
composed of 40 neurons; neurons were simulated as Poissonian processes (background mean = 1 spike/bin). Total simulation time was 8000 bins;
assembly activation frequency was set to 1% of the bins. (C) Pseudocolors denote the ratio of the number of eigenvalues outside theoretical limits to
the number of cell assembly neurons as a function of the activation firing rate and total time bins. Values represent the mean over 20 simulations.
Networks were composed of 40 neurons; the cell assembly was made of 10 neurons set to activate at a frequency of 0.5% of the bins. Notice that for
each activation firing rate, a perfect estimation of the number of cell assembly neurons (ratio = 1) is achieved if the number of bins analyzed is large
enough. (D) Minimal activation firing rate required for a perfect match between the number of eigenvalues outside predicted limits and the number
of cell assembly neurons as a function of the number of analyzed bins. Different lines represent different cases varying in the number of neurons in
the assembly and in the frequency of cell assembly activation, as labeled.
doi:10.1371/journal.pone.0020996.g005
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Figure 6. Principal component-based analysis identifies cell assembly neurons and the time course of their activation. (A) Binned
spiking activity of a network composed of 25 neurons simulated for 8000 bins (200 bins shown). Neurons are modeled as Poissonian processes with
random mean rate between 1 and 5 spikes/bin, uniformly distributed across the neurons. In addition, each neuron is set to fire at 66 its mean rate at
0.5% of the bins randomly chosen (referred to as activation bins). In order to simulate cell assemblies, we set all activation bins to be independent,
except for two groups of neurons which have simultaneous activation bins. (B) Autocorrelation matrix (ACM). (C) Theoretical eigenvalues distribution
for independent neuronal activity (top), and the eigenvalues histogram computed from the simulated network (bottom). Note that 2 eigenvalues fall
above the theoretical upper limit predicted for random activity, which correspond to the two cell assemblies present in the network. Notice further
that three other eigenvalues fall below the lower limit; the number of eigenvalues outside the theoretical limits is therefore 5, which corresponds to
the number of neurons participating in cell assemblies. (D) ACM eigenvectors associated with the two eigenvalues above the theoretical limit for
random activity. These vectors are referred to as principal components (PCs). (E) Neuronal representations in the subspace spanned by the PCs
(referred to as the Assembly Space). Since the PCs are the vectors which best describe strong correlated activity, neurons with larger projections on
the Assembly Space are the neurons involved in cell assemblies (the label of these neurons are also shown). (F) Interaction Matrix; the entries of this
matrix are measures of correlated activity of cell assembly neurons in the Assembly Space. Higher values denote neuron pairs pertaining to the same
cell assembly, whereas lower values denote neurons whose activity is orthogonal. (G) From the Interaction Matrix, a simple clustering algorithm
(described in Supplementary Information files) identifies the neurons of each cell assembly. (H) Same binned spiking activity as in A but rearranged in
order to show cell assembly neurons on top, as labeled. (I,J) Assembly Vectors are defined as mean vectors in the Assembly Space (I); these vectors
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simulating assembly activations; non-assembly neurons had peak

firing at independent (randomly chosen) bins.

Figure 6A shows a 200-bin interval of the simulated network;

the associated autocorrelation matrix is shown in Figure 6B. Two

eigenvalues of this matrix fall above the upper theoretical limit,

whereas three eigenvalues lie below the lower bound (Figure 6C).

This analysis therefore indicates that two assemblies and a total of

five assembly neurons are present in the network, consistent with

predefined simulation parameters.

Since eigenvalues above statistical threshold represent ensemble

activity, we use the PCs associated with them (Figure 6D) to search

for the identity of assembly neurons. The autocorrelation matrix

can be seen as 25 vectors in a 25-dimensional space. In this case,

PCA roughly means that the detected assembly activity is better

described by the subspace spanned by the PCs; in the present

work, we refer to this subspace as ‘‘Assembly space’’. Removing

the non-principal components of our analysis is equivalent to

filtering the autocorrelation matrix in order to unravel assembly

activity.

Figure 6E shows the neuron vectors on the Assembly space,

which are obtained straight from the PC entries (see Methods).

Note that some neurons present large vector length in this space,

indicating that their spike activity is related to the detected

assemblies. In fact, the five neurons with large vector length in the

Assembly space (labeled in Figure 6E) correspond to the five units

participating in assembly activity. Notice further that there are two

clusters of neuron vectors in the Assembly space; these clusters are

roughly orthogonal to each other, indicating independent activity.

Indeed, notice that neurons orthogonal to each other pertain to

different assemblies. Thus, we computed the length of the

projection of each neuron vector onto the direction of the others

and expressed these results in an ‘‘Interaction Matrix’’ (Figure 6F;

see Methods). From the Interaction matrix, we used a simple

clustering algorithm in order to determine which neurons were in

each assembly (Figure 6G). Although the identification of assembly

neurons was straightforward in this example from the visual

inspection of Figure 6F, we noted that this was not always the case,

making the use of a robust algorithm necessary (see Methods and

Figures S1 and S2 for details about the algorithm). Figure 6H

shows the same binned spike activity as in Figure 6A but with rows

reordered with respect to the identified assemblies. Note that

neurons within an assembly have firing peaks at the same bins.

The use of PCs was previously proposed in order to create

projectors for computing ensemble activity with a single bin

resolution [31,32,34,35]. An activity projector can be defined as

the outer product of a PC with itself ([34]; see Methods for details).

Since each PC represents an activity pattern, it is possible to

compute the instantaneous strength of this pattern by multiplying

the z-scored binned spike activity with the projector derived from

the PC (see Methods). However, as shown in Figure 2, in some

cases this method does not represent individual assemblies. To

overcome this limitation, we propose another vector to construct

the projectors. This vector, called ‘‘assembly vector’’, is defined as

the mean over all neuron vectors in the Assembly space that

exclusively pertain to a given assembly (Figure 6I). Notice that the

assembly vector is a linear combination of the PCs (Figure 6I,J),

which allows obtaining this vector in the 25-dimensional space. By

using this optimal assembly vector to construct the activity

projector, we were then able to obtain the time course of the

activity of the corresponding cell assembly. Figure 6K shows the

results of such approach. For each assembly, the peaks of the time

course matched perfectly the assembly activations seen in

Figure 6H.

Note that in this example the PC weights directly reveal the

neurons composing each assembly (Figure 6D). For instance, PC1

had higher values in dimensions 5, 15 and 21, which correspond to

Cell Assembly 1 neurons; by the same token, the high values of

PC2 denote Cell Assembly 2 neurons. Consequently, the estimated

assembly optimal vectors in Figure 6I are very similar to the PCs

and thus the activity projectors computed from the assembly

vectors are virtually the same as the ones calculated from the PCs.

As already mentioned (see Figure 2), the previous framework is

able to track individual assembly activity when there are no

overlapping neurons among the assemblies, as is the case of the

example shown in Figure 6; therefore, our modified approach is

equivalent to the original in these cases (see Figure S3).

In Figure 7 a more complex example is shown. The network

activity was modeled as in Figure 6, but with three assemblies

present in the network. Moreover, we simulated overlapping

neurons between the assemblies (Assembly 1 neurons: #4, #15,

#17, #21; Assembly 2 neurons: #6, #12, #15, #21; Assembly

3 neurons: #9, #21, #25). Figure 7C shows that 3 eigenvalues

lie above the upper theoretical limit, denoting the three cell

assemblies; moreover, the number of eigenvalues outside the

theoretical limits matches the number of cell assembly neurons (8

in this example). Note in Figure 7D that it is no longer possible to

identify the assemblies (in terms of which neurons compose them)

by a visual inspection of the PC weights. Therefore, the

estimation of the time course of assembly activity by computing

the projectors from the PCs would be misleading in this case (see

Figure S3).

As in the former example, projecting the neuron vectors on the

Assembly space reveals the cell assembly neurons (Figure 7E).

Note that the assembly neurons are not clearly clustered as in the

example shown in Figure 6. While neurons that only pertain to the

same assembly still tend to cluster together, neurons that

participate in more than one assembly cannot be in two clusters

simultaneously. For instance, projected neuron #15 is orthogonal

to projected neurons #9 and #25. This is because neuron #15

does not compose the assembly in which neurons #9 and #25

participate. Conversely, neuron vector #15 is not orthogonal to

any of the other neuron vectors, since they all participate in at least

one assembly together with neuron #15. That is, overlapping

neurons still have relatively large degree of collinearity with

neurons that compose the same assemblies (Figure 7F). In this

sense, since neuron #21 is in all assemblies, it is not orthogonal to

any other assembly neuron.

As in the former example, pairwise relations between neurons in

Assembly space can be inferred from the Interaction matrix.

Notice however that in this case it is not straightforward to identify

the cell assemblies by visual inspection of the Interaction Matrix

(Figure 7F). Nevertheless, the clustering algorithm we developed

(see Methods and Figures S1 and S2) was able to identify the

precise composition of each assembly (Figure 7G). As before, after

are used to compute projector operators (J). (K) The projector operators are then applied to the binned spiking activity, revealing the time course of
the activation strength of each cell assembly. Note that these results corroborate the activations seen by visual inspection of H. Since the cell
assemblies were non-overlapping in this example, the identity of cell assembly neurons can be directly inferred by a simple analysis of the PCs
(represented by the dashed line from D to H). However, such straight inference cannot be performed in cases where one or more neurons pertain to
two or more assemblies (see Figure 7).
doi:10.1371/journal.pone.0020996.g006
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identifying the assemblies we computed the optimal assembly

vectors (Figure 7I,J) and used them to project the proper time

course of assembly activations (Figure 7K; compare with Figure

S3). This example therefore shows that the use of assembly vectors

instead of PCs is better suited for computing assembly activity.

Examples of applications to real data

So far we have used simulations to introduce a PCA-based

method for cell assembly detection, providing details about how

each step worked. In this section we apply the framework to real

Figure 7. Identification of cell assemblies with overlapping neurons. (A–K) Same panels as in Figure 6, but for a network composed of three
cell assemblies presenting common neurons. See text for further details.
doi:10.1371/journal.pone.0020996.g007
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data and further compare the modifications we propose with the

original method.

We analyzed spike activity recorded from rats chronically

implanted with multielectrode arrays (see Methods). In the first

example (Figure 8A), neuronal activity was obtained from the

hippocampus and primary somatosensory cortex (S1) during the

exploration of novel objects [44]. In Figure 8Ai, we show a 200-

bin period (bin size = 30 ms) of spike activity of this network;

Figure 8Aii shows the Marčenko-Pastur distribution along with the

empirical eigenvalue distribution computed from the associated

autocorrelation matrix. Note the detection of three assemblies in

this example. We then applied the framework described above,

and in Figure 8Aiii we plot the reordered spike activity with

respect to the assemblies; dashed circles depict two examples of

assembly activations occurring in the time period displayed.

Figure 8Aiv shows the time course of activation of the detected

assemblies; notice that the activation peaks match the activations

seen in Figure 8Aiii. Finally, in Figure 8Av we show all neurons in

a circular grid (hippocampal neurons: #1–14; S1 neurons: #15–

56) and represent the assemblies by colored lines. Notice that our

modified method allows us to infer that two assemblies have

neurons in both brain regions.

In the second example (Figure 8B), we analyzed neurons

recorded from the hippocampus, S1 and primary visual cortex

Figure 8. Example of cell assembly identification using principal components in an experimental data-set. (A) Ai: Binned spiking
activity for 14 hippocampal and 42 S1 neurons obtained from a rat during exploration of a novel object (see Ribeiro et al. [44]). Bin size = 30 ms; total
time analyzed: 117.51 s. Aii: Theoretical eigenvalues distribution for independent neuronal activity (top) and the eigenvalues histogram computed
from the actual network (bottom) exhibiting 3 eigenvalues above the theoretical upper limit predicted for random activity. Aiii: Same binned spiking
activity as above, but with reordered rows such that neurons pertaining to cell assemblies are displayed in the top rows (color bars near the top of
the y-axis mark cell assembly neurons; colored dashed circles highlight example periods of assembly activation). Aiv: Projection analysis yielding the
activation time course for the three cell assemblies indentified in this network (notice that cell assembly 3 does not activate in the period shown). Av:
Graph diagram showing detected cell assemblies (connected neurons). Notice that inter-regional cell assemblies are revealed. (B) Bi: Graph diagram
showing four assemblies detected in recordings from S1, V1 and hippocampus (HP) during slow-wave sleep (Bin size = 30 ms; total time
analyzed = 124 s). Bii: Time course of ensemble activity as estimated by the original (right) and modified (left) framework.
doi:10.1371/journal.pone.0020996.g008
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(V1) during slow-wave sleep (hippocampal neurons: #1–12; S1

neurons: #13–28; V1 neurons: #29–51). Analysis of the

eigenvalues revealed that 4 cell assemblies were present in this

network (not shown). We again applied our framework to get to

the precise identity of the assembly neurons and depict the four

assemblies in Figure 8Bi. Notice in this panel that one assembly

was composed by neurons from the three brain areas, whereas

three other assemblies were restricted to a single brain region.

Notice further in this example that some neurons participate in

two assemblies. We then compared the time course of ensemble

activity when the PCs were used to build the projectors with

projectors derived from assembly optimal vectors. The left and

right panels in Figure 8Bii show the activity time course estimated

by the assembly vector and by the direct use of the PCs,

respectively. Note that the individual assembly activations

estimated by the assembly vector approach appear mixed in

different PC projections. For instance, the PC1 projection carries

mixed activations of Assemblies 1 and 2, whereas PC2 carries

information about Assemblies 3 and 4. Based on these results and

the simulations presented above, we conclude that the use of

assembly vectors to compute the activity time course is well suited

for discriminating the activation of individual assemblies, even in

the presence of overlapping neurons.

Discussion

We have presented a mathematical method for the identifica-

tion of cell assemblies and for computing their activity as a

function of time (in units of time bins). The overall algorithm is

based on PCA and can be divided in three major steps: (1) Detection

of the number of cell assemblies and assembly neurons; (2) Identification of cell

assemblies; and (3) Computation of assembly activity as a function of time.

The algorithm presented here constitutes an extension of powerful

methods introduced previously [31,32,34]. The adaptations and

extensions we propose make our framework able to circumvent

important limitations present in former methods.

With respect to step 1, Peyrache et al. introduced the use of the

Marčenko-Pastur distribution as the null hypothesis to determine

the presence of ensemble activity [34]. This is an important

achievement in terms of computational cost because most of the

previous methods relied on surrogate data analyses to determine

statistical significance [26,30,45,46,47,48,49]. Moreover, other

methods are only feasible for a small number of neurons

[29,30,50,51] or only analyze pairwise correlations [45,52,53],

making the analysis of large networks troublesome. The

framework presented here inherits the computational advantages

of the method envisioned by Peyrache et al. [34]. Additionally, it

provides a clear interpretation for the eigenvalues derived from

autocorrelation matrices of neuronal spike activity and their

relation to the Marčenko-Pastur distribution: we showed that the

number of eigenvalues significantly different from the random

distribution contain useful information about the number of

assemblies and the number of neurons participating in cell

assemblies. This constitutes step 2 in our framework, which was

not present in previous formulations.

Regarding step 3, the use of PCs in order to construct a time

series of ensemble activity had already been introduced by

Nicolelis et al. [31,32]. More recently, Peyrache et al. [34]

proposed the use of projectors computed from the PC vectors

associated with significant eigenvalues to extract patterns of neural

activity from a defined template epoch to be later assessed in a match

epoch. Peyrache and colleagues used this approach to obtain

ensemble activation signatures from spike activity of medial

prefrontal cortex (mPfc) neurons during a learning stage (template

epoch). Next they used these operators to measure instantaneous

similarities (i.e., activations) of mPfc activity during a subsequent

slow-wave sleep epoch (match epoch). It was found that

(re)activations occurred preferentially during sharp wave/ripple

complexes in post experience episodes, but not during previous

sleep phases [35]. In another recent study, Benchenane et al. [36]

reported that Pfc ensemble activations occur preferentially during

periods of high theta coherence between the hippocampus and Pfc

in a Y-maze task, which tended to occur during the decision point.

These remarkable findings demonstrate that the use of PCA to

estimate ensemble activity is a powerful tool to study network

functioning. However, as illustrated in the present report, the

framework applied in previous studies [32,33,35,36] possibly

merges the activity of multiple cell assemblies into a single activity

pattern. In this sense, the extension of the method now introduced

allows for the isolation of the activity patterns of distinct groups of

neurons. We believe that sorting out the individual activity of

different assemblies will provide important insights in future

studies.

While the studies mentioned above have focused on a template

matching approach, the results shown in Figure 8 were obtained by

first identifying all cell assemblies present in the network and

subsequently assessing their activity time course in the same time

period used to identify them; notice therefore that the method can

be employed in different ways. One should however be cautious to

avoid potential spurious results derived from circular analysis [54]

when using the template-match approach. For example, it will likely

happen that assembly activity during the template epoch (in which

the assemblies are defined) is higher than that of any other epoch

not used for computing the activity projectors; therefore, we believe

one should not make quantitative inferences about assembly activity

during the template epoch compared to other epochs.

It is important to emphasize that the PCA-based method is not

sensitive to sequences of neuronal activity, such as synfire chains

[27,55,56]. As pointed in Peyrache et al. [34], the statistical

difficulties accompanying methods that look for firing sequences

are overwhelming when one needs to analyze larger networks

[47,49]. In fact, a common strategy to bypass combinatorial

explosion (the number of possible temporal patterns is larger than

the number of samples) is to detect ensemble activity disregarding

the precise identity of the cell assemblies [57,58,59]. It is also

important to note that only a tiny fraction of the neurons in the

brain is observable, and therefore synfire chains are likely the

effect of underlying sequences of cell assemblies, also known as

Hebb’s phase sequences [10]. The assessment of assembly

sequences can be potentially achieved by the use of our method

in combination with methods for detecting sequential activations

[26,50,53].

It is also important to consider that the bin size used for the

analyses can be critical for the interpretation of the results. As

recently noted [12], bin sizes up to 30 ms are potentially well suited

to analyze assembly activations. For instance, the typical membrane

integration time in the waking cerebral cortex is estimated to vary

between 10 and 30 ms [60,61]. Moreover, previous work has shown

that neuronal members of a putative cell assembly tend to

synchronize transiently in time windows of approximately 25 ms

[14,62]. Interestingly, the time window for spike timing dependent

plasticity is also consistent with this time-scale [63,64,65]. Finally,

this time-scale corresponds to the period of gamma oscillations,

which are believed to play a key role in binding representations

coded by transiently active cell assemblies [66].

The novel framework described here allows the study of cell

assemblies with shared neurons. The importance of this achieve-

ment is related to how information is processed and stored in the

Detecting Cell Assemblies by PCA

PLoS ONE | www.plosone.org 12 June 2011 | Volume 6 | Issue 6 | e20996



brain. Some authors suggest that each neuron would only fire to a

specific concept or stimulus (grandmother cells) [67]; therefore,

cell assemblies encoding different ‘‘things’’ would not be expected

to share neurons. However, a mounting body of work shows that

neurons can be very selective (sparse coding), but are not

grandmother cells [68,69]. The apparent grandmother cells in

the human medial temporal lobe [70] may actually respond to

between 50 and 150 distinct concepts [71]. Neurons participating

in the representation of multiple concepts imply that the

processing of information is distributed and occurs through a

multiplexed code, in which concepts are represented by the activity

of partially-overlapping groups of neurons, as postulated by Hebb.

Despite the worldwide acceptance of the cell assembly theory,

there is still a paucity of evidence corroborating (or disproving) it.

Hebb’s hypotheses not only deal with the formation of assemblies

and phase sequences, but also constitute a complete theory

describing how learning, fear, hunger, and other complex behaviors

emerge from the brain [1]. Most of the difficulty in testing the theory

resides in the fact that only a tiny fraction of neurons in the brain

can be simultaneously recorded at any given time. However,

techniques for massive neuronal recordings are being developed at

accelerating rates [22], and while we still lack proper tools for

analyzing large quantities of neurons [57,72], much progress is

being made to circumvent this limitation. We hope the work

presented here constitutes a useful step in this direction.

Methods

Simulations and data analyses were programmed in MATLAB

(The Mathworks, Inc); MATLAB codes for the computation of cell

assemblies and their dynamics can be obtained from the authors

upon request.

Analytical formula of the Marčenko-Pastur distribution
The spectrum of eigenvalues of an autocorrelation matrix

computed from a random matrix M of Nbins columns and Nneurons

rows follow the Marčenko-Pastur distribution, which in the limit of

Nbins?? and Nneurons??, with q~Nbins=Nneurons§1 constant,

is given by

p(l)~
q

2ps2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(lmax{l)(lmin{l)

p
l

where s is the standard deviation of the elements of M (in our

case, we have s~1 since we apply the z-score normalization to the

binned spike activity); lmax and lmin are the upper and lower limits

of the Marčenko-Pastur distribution, and they are given by:

lmax
min ~s2(1+

ffiffiffiffiffiffi
1=q

q
)2

Notice that lmax and lmin converge to 1 when q?? and in this

limit the theoretical distribution becomes a Dirac delta function at

l~1. Therefore, the predicted eigenvalues distribution for

independent neuronal activity has lower variance when a greater

number of time bins are analyzed for a given number of neurons

(compare Figure 3A and 3C).

We note that even though the analytical formula for the

Marčenko-Pastur distribution was derived in the limit case of large

Nbins and Nneurons, this theoretical distribution also approximates

the actual distribution in cases of finite matrices, as shown in

Plerou et al. [73] and in the present work. Nevertheless, one can

also make use of the bias correction for finite size matrices

suggested in [74]. The upper theoretical limit then becomes

lmaxzN
{2=3
neurons. We found however that this correction did not

influence the results shown in the present work.

Outer product and the definition of the activity projector
operators

The outer product of two vectors u and v of length N is defined as

u6v~

u1v1 . . . u1vN

..

.
P

..

.

uNv1 � � � uNvN

0
BB@

1
CCA

The outer product is used to construct the projectors of ensemble

activity, as explained in the following. Let C be the autocorrelation

matrix of a z-scored binned network activity Z of dimension

Nneurons|Nbins, and let pi (i = 1,2,…, Nneurons) denote the principal

components of C. The projector Pi associated with pi is given by

Pi~pi6pi

If li is the eigenvalue associated with the principal component pi, C
can be decomposed as

C~l1P1zl2P2z:::lNneurons PNneurons~
XNneurons

i~1

liPi

Assuming that each principal component pi represents an ensemble

co-activation pattern, the equation above shows that C can be

represented by a linear combination of the pattern representations

encoded in the matrices Pi.

Assembly activity time-course
Peyrache et al. [34] has recently proposed the use of the

principal components associated with significant eigenvalues for

assessing ensemble activity with a single-bin resolution. The idea is

to calculate the instantaneous similarity of the binned spike activity

and the ensemble activity pattern as a function of time.

Let P be outer product of a significant principal component

with itself and Z(b) be the b-th column of the z-scored binned spike

activity (in other words, the number of spikes of all neurons in the

b-th bin). The measure of instantaneous similarity of P and Z as a

function of time is given by

R(b)~Z(b)T PZ(b)

This equation can be rewritten as

R(b)~
X

i,j

ZibPijZjb

where Zib is the normalized firing rate of neuron i in bin b, and Pij

is the entry in the i-th row and j-th column of P. Note that when

i = j, the corresponding term of the summation only takes into

account the activity of a single neuron i. Since our goal is to

measure ensemble activity more than single neuron activations,

this term can be set to zero and the equation reduces to

R(b)~
X

i,j,i=j

ZibPijZjb
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which is the equation for computing the time course of ensemble

activity used in Peyrache et al. [34].

As we show in the present work (Figure 2 and S3), projectors

computed as above are not appropriate to track the activity time

course of individual cell assemblies if there are overlapping

neurons among assemblies. To overcome this problem, we

propose constructing the projectors using the optimal assembly

vectors in Assembly space (Figures 6 and 7). This is achieved as

follows: The Assembly space is defined as the metric subspace

spanned by the principal components pi associated with

eigenvalues li that are significantly above chance. Let ak

(k = 1,…, Nneurons) denote the neuron vectors in the Assembly

space; each ak is given by (see Figure 6E):

ak~ p1(k),p2(k),:::,pn(k)ð Þ

where n is the number of significant eigenvalues. As we show in the

present work, the number of eigenvalues outside the theoretical

distribution gives the total number of neurons participating in cell

assemblies. Supposing there are NCAneurons assembly neurons, they

correspond to the NCAneurons vectors with largest norm (vector

length) in Assembly space (Figures 6E and 7E). Then, the

projections of each neuron vector in the Assembly space onto

the direction of the other vectors are computed and used to build

the Interaction Matrix (Figures 6F and 7F). That is, given two

neuron vectors ai and aj, the corresponding (i,j) entry of the

Interaction Matrix is given by (aiNaj)/(ajNaj). From the Interaction

Matrix, it is possible to determine which neurons compose each

assembly by means of a clustering algorithm (see next section). The

estimated optimal assembly vector �aa is then defined for an

assembly A as the mean over ai’s for all neurons i exclusive to A,

normalized to have unitary norm:

�aa~

P
i aiP
i ai

�� ��

Next, �aa is expressed as a linear combination of the significant

principal components:

a~
Xn

i~1

�aa:pið Þpi

A projector Y is then calculated as the outer product of a with

itself (Y~a6a). Finally, we use Y to compute the activity time

course of assembly A as follows:

RA(b)~
X

i,j,i=j

ZibY ijZib

Binary Interaction Matrix and clustering algorithm
The algorithm identifies the neurons pertaining to each cell

assembly based on the analysis of the Interaction Matrix. The

entries of the Interaction Matrix are a measure of correlation

between two neuron vectors in Assembly space (taking into

account only cell assembly neurons). As we have shown in

Figures 6 and 7, neurons that pertain to different assemblies are

orthogonal to each other, while high collinearity levels indicate

that neurons are correlated in the Assembly space. Therefore, it is

expected that the distribution of Interaction Matrix entries is

bimodal, having sets of low and high values (see Figure S1). We

then apply a uni-dimensional version of the K-means clustering

algorithm [75] in order to find a threshold that best separate these

groups. We use this threshold to create a binary Interaction

Matrix; that is, we transform all matrix values in 0’s (values below

a threshold) and 1’s (values above the threshold). This binary

matrix is the input to the clustering algorithm which is then able to

sort apart the neurons of different assemblies. In Figure S1 we

provide an overview of the thresholding procedure and in Figure

S2 we describe the clustering algorithm.

Electrophysiological recordings
Male Long-Evans rats were chronically implanted with tungsten

microelectrode arrays aimed at the hippocampus, primary visual

cortex and primary somatosensory cortex. Data recorded from

these animals were described in a previous study [44], in which a

detailed description of surgery, data collection, behavior and

histology can be found.

Supporting Information

Figure S1 Interaction Matrix thresholding. (A) Ai: Interaction

Matrix of the example shown in Figure 7. Aii: Histogram of the

entries of the Interaction Matrix shown in Ai. Dashed red line

indicates the threshold found by a K-means algorithm. The

threshold is the mean between the borders of the clusters. Aiii:

Binary Interaction Matrix. Values lower and higher than the

threshold are set to 0 and 1, respectively. This matrix is later used

as input to the clustering algorithm described in Figure S2. (B)

Same as (A) but for the real data shown in Figure 8B. Note that the

threshold found separates the bimodal distribution.

(TIF)

Figure S2 Description of the assembly clustering algorithm.

(A,B) Flux diagram representing the three main steps of the

algorithm (A) and an example using simulated data of nine

neurons (B). The algorithm receives as input a Binary Interaction

Matrix (BIM; depicted in B top panel), which is obtained by

thresholding the Interaction Matrix (see Figure S1), and provides

as output the assembly label(s) for each neuron (B bottom panel).

Step 1 involves re-organizing the BIM according to the number of

interactions in each row and also removing repeated rows; we

denote the resulting matrix as the OBIM (B second panel from

top). Notice in B that row #8 does not appear in the OBIM since

it was equal to row #5. In Step 2 assembly labels are created and

assigned to the neurons. This is achieved based on sequentially

examining each row of OBIM and identifying for each neuron

(row) all other neurons that interact with it; a common assembly

label is ascribed to all interacting neurons. New assembly labels are

created whenever the neuron (row) being processed has not been

previously assigned to any of the existing assembly labels. This step

generates the Assembly Label Matrix (ALM), which entry (i,j)

informs the assemblies shared by neurons #i and #j. Notice that

neuron #8 automatically appears in ALM under this procedure (B
third panel from top). Finally, in Step 3 the assembly labels in the

diagonal of ALM are extracted; they indicate the assemblies in

which each neuron participates.

(TIF)

Figure S3 Estimation of time course of cell assembly activity

based on individual PCs for the examples shown in Figures 6 (A)

and 7 (B). The estimation of assembly activity based on assembly

vectors is also reproduced from Figures 6 and 7 for comparison.

(TIF)
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