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Abstract

Background: Psychosis has various causes, including mania and schizophrenia. Since the differential diagnosis of psychosis
is exclusively based on subjective assessments of oral interviews with patients, an objective quantification of the speech
disturbances that characterize mania and schizophrenia is in order. In principle, such quantification could be achieved by
the analysis of speech graphs. A graph represents a network with nodes connected by edges; in speech graphs, nodes
correspond to words and edges correspond to semantic and grammatical relationships.

Methodology/Principal Findings: To quantify speech differences related to psychosis, interviews with schizophrenics,
manics and normal subjects were recorded and represented as graphs. Manics scored significantly higher than
schizophrenics in ten graph measures. Psychopathological symptoms such as logorrhea, poor speech, and flight of
thoughts were grasped by the analysis even when verbosity differences were discounted. Binary classifiers based on
speech graph measures sorted schizophrenics from manics with up to 93.8% of sensitivity and 93.7% of specificity. In
contrast, sorting based on the scores of two standard psychiatric scales (BPRS and PANSS) reached only 62.5% of
sensitivity and specificity.

Conclusions/Significance: The results demonstrate that alterations of the thought process manifested in the speech of
psychotic patients can be objectively measured using graph-theoretical tools, developed to capture specific features of the
normal and dysfunctional flow of thought, such as divergence and recurrence. The quantitative analysis of speech graphs is
not redundant with standard psychometric scales but rather complementary, as it yields a very accurate sorting of
schizophrenics and manics. Overall, the results point to automated psychiatric diagnosis based not on what is said, but on
how it is said.
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Introduction

Psychosis is a broad phenomenon that can arise from

pathologies such as schizophrenia or mania [1,2]. Different

thought disorders present on these conditions are manifested by

disturbances in the normal structure of language. The differential

diagnosis of psychosis depends on specific speech disturbances that

at present can only be detected by well-trained examiners [3].

Indeed, for over a century the psychiatric interview has been the

main tool for mental disease diagnosis [3]. Symptoms are detected

by the qualitative analysis of body and verbal language employed

to report on everyday facts. Despite the progress achieved by the

successive editions of the Diagnostic and Statistical Manual of

Mental Disorders, critics remain skeptical about the method’s

objectivity for differential diagnosis [4]. This contentious back-

ground begs a fundamental question for the understanding,

diagnosis and treatment of psychosis: is it possible to objectively

quantify the disruption in the normal process of thought, and

identify precisely the patterns of disruption?

A solution to this problem may come from quantitative speech

analysis, using language as a privileged measuring lens into

thought. Different aspects of non-pathological language have been

studied using complex network models derived from graph theory

[5,6,7,8]. A graph represents a network with nodes connected by

edges [9,10]; in the case of language, nodes correspond to words

and edges correspond to semantic and grammatical relationships

[5,8]. Formally, graphs are networks defined by G = (N, E) where

N = {w1, w2, w3, …} is the set of nodes and E = {(wi,wj)} is the set
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of edges between words wi in N and wj in N. Speech graphs belong

to the general class of ‘co-ocurrence graphs’, which models co-

occurrence patterns between words successively uttered [8]. This

means that speech is a directed network, characterized by having

each node connected to an ensuing node by a directed edge,

indicated by an arrow. Speech also corresponds to a special kind of

network called multigraph, in which self-loops (edges connecting a

node to itself) and multiple edges (two nodes connected by more

than one edge) may occur. Basic measurements for the

characterization of those networks can be divided into local

measures that describe the neighborhood of a node or the

occurrence of sub-graphs (components), and global measures that

describe the statistical properties of the entire network [9,10].

While the interpretation of a graph’s meaning depends on what is

actually being represented [11,12,13], the quantification of its

structure may be illuminating. Here we used graphs to quantify

structural speech differences between psychotic and normal

subjects.

Results

Oral interviews were recorded with 24 adult subjects,

comprising 8 schizophrenic patients, 8 manic patients, and 8

controls without diagnosed mental disorders (Tables S1, S2). As

detailed in Methods, we began by applying a standard protocol to

certify the psychiatric diagnosis previously given by first response

psychiatrists at two public hospitals (SCID). Next, we applied two

psychometric scales (PANSS and BPRS) to quantify symptoms at

the time of the interview, including psychosis. Then, subjects were

asked to report exclusively on a recent dream. Deviations from this

anchor topic to report on waking events were used to evaluate

‘‘flight of thoughts’’, a typical manic symptom [1].

The reports were parsed into backbone speech elements that

corresponded to subject, verb and object (Fig. 1A). Each report

was represented by a directed multigraph in which each node

corresponded to a canonical element (lexeme) and the temporal

link between two elements was represented by an edge (Fig. 1B).

Elements related to dreaming were sorted from elements related to

waking (Fig. 1B). Representative graphs illustrate the major speech

differences among schizophrenics, manics and controls, such as

amounts of nodes and edges, or recurrence and deviation from the

anchor topic (Fig. 1C).

To quantify these effects, we began by calculating eleven local

measures according to the following categories: General (Fig. 1),

including number of nodes (N) and number of edges (E);

connectivity-related (Fig. S1), including number of nodes on the

largest connected component (LCC), number of nodes on the

largest strongly connected component (LSC), and average total

degree (ATD); recurrence-related (Fig. S1), including number of

parallel edges (PE), and number of loops with one, two or three

nodes (L1, L2, L3); and topic deviation (Fig. 1), including number

of waking nodes (WN) and waking edges (WE). Manics scored

significantly higher than schizophrenics in nearly all measures

(Fig. 2 and Tables S3, S4). Manic reports displayed more nodes

and edges than reports from schizophrenics, reflecting the increase

in the amount of talking that defines ‘‘logorrhea’’. Manics also

scored significantly higher for measures related to connectivity and

recurrence than schizophrenics, which points to the impoverished

speech of the latter. Finally, manic reports contained significantly

more waking nodes and edges than schizophrenic reports,

revealing ‘‘flight of thoughts’’. This was confirmed by calculating

ratios of waking nodes/total nodes and waking edges/total edges

across groups (Fig. 3). We also calculated three global measures for

the statistical analysis of the connectivity structure of the entire

network: Density (D), diameter (DI) and average shortest path

(ASP); no significant group differences were obtained (Fig. 4).

Since schizophrenics spoke significantly less per report than

manics (P = 0.0006; Fig. 5), their several differences at the level of

local graph measures could potentially be explained by this major

verbosity difference. Yet, we found four speech graph local

measures to be significantly different between groups even when

differences in the number of words per report were discounted

(Fig. 6A, Fig. S2, Table S4): Graphs from the schizophrenic

reports presented more nodes per word (P = 0.0104) and a higher

average total degree per word (P = 0.0051) than reports from

manics. Furthermore, graphs from the manic group still displayed

more waking edges (P = 0.0146) and more parallel edges

(P = 0.0044) than graphs from the schizophrenic group. Thus,

manics and schizophrenics showed markedly different tendencies

to reiterate or abandon a conversation topic, even when the data

were normalized by the number of words per report. In

comparison, no significant differences were detected between

schizophrenics and manics with regard to BPRS and PANSS

scores, two standard scales for the quantification of psychotic

symptoms (Fig. 6B).

While data normalization by the number of words per report

decreased the number of significant group differences for local

graph measures, it had the opposite effect with regard to global

measures. As shown in Figure 7, speech graphs from schizophren-

ics and manics showed major differences in normalized global

network properties, and were easily separated by each of the three

measures due to the reduced inter-individual variance within each

pathological group. Manics produced significantly denser graphs

than schizophrenics (P = 0.007), with significantly smaller diameter

(P = 0.0138) and average shortest path (P = 0.0104) in the former

than in the latter. Interestingly, controls yielded intermediate levels

between manics and schizophrenics, spanning a wide range of

values that reflect the increased inter-individual differences among

non-pathological subjects.

To investigate the feasibility of automated differential diagnosis

based on speech graph analysis, we trained a naive Bayes (NB)

classifier with different subsets of graph measures as inputs. The

data were normalized by the number of words in each report, in

order to discount the effects of normal inter-individual verbosity

differences. Furthermore, the inputs were restricted to data that

could be obtained without having to resort to an interpretation of

the meaning of the reports, i.e. waking nodes and edges were not

employed. Sensitivity, specificity, the area under the receiver

operating characteristic curve (AUC) [14] and the kappa statistic

[15] were used as metrics of classification quality. Our approach

objectively and accurately distinguished schizophrenic from manic

reports (Fig. 8), and was comparable to the inter-rater reliability of

SCID for the distinction between schizophrenics and controls, but

not for the distinction between manics and controls [16,17]. In

contrast, when the scores from the psychometric scales BPRS and

PANSS were used as inputs to the classifier, it was possible to

distinguish controls from psychotic patients, but not schizophren-

ics from manics (Fig. 8). Indeed, none of the graph measures

correlated significantly with BPRS and PANSS scores (Table S5).

To further investigate the issue of classifier accuracy, we

compared the group classification obtained by the NB model

[18,19] with four other binary classifiers: Radial Basis Function

(RBF), Multi-Layer Perceptron (MLP), Support Vector Machine

(SVM), and Decision Tree (DT). As shown in Table S6, all

classifiers sorted manics from schizophrenics better when the

inputs were speech graph measures, in comparison with

psychometric data. The best results were obtained using RBF

and NB (93.8% of sensitivity and 93.7% specificity). The sorting of

Quantifying Thought Disorder in Psychosis
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schizophrenics versus controls was similar for psychometric and

speech graph measures, but the sorting of manics versus controls

was better when psychometric measures were used as inputs

(Table S6).

Discussion

The results show for the first time that a graph analysis of the

speech produced by psychotic patients can be used to quantita-

tively sort manics from schizophrenics. Indeed, this approach

allowed for a very accurate discrimination of the pathological

groups of interest using various binary classifiers, reaching more

than 93% of sensitivity and specificity in the separation of

schizophrenics from manics. In contrast, sorting based on the

scores of two standard psychiatric scales (BPRS and PANSS)

reached only 62.5% of sensitivity and specificity. This indicates

that the quantitative analysis of speech graphs is not redundant

with the major psychometric scales but rather complementary,

because it measures speech structure symptoms not well grasped

by those instruments.

Our approach was not purely topological, since two out of the

fourteen graph measures investigated in the present study required

semantic node labeling (i.e., waking versus dreaming). Notwith-

standing, none of the remaining measures required any interpre-

tation beyond the differentiation of lexemes, strictly at the

grammatical level. Importantly, the data fed to the binary

classifiers did not include those two waking-related measures.

Symptoms such as poor speech, logorrhea and flight of thoughts

were detected by graph analysis even when inter-individual

differences in verbosity were accounted for. Manics produced

more parallel edges per word and more waking edges per word

than schizophrenics. This means that the ‘‘logorrhea’’ typical of

manics [1] comes not only from the excess of words, but from a

discourse that branches more and returns more times to the same

topic, in comparison with schizophrenic group. Likewise, ‘‘flight of

thoughts’’ cannot be trivially explained by increased verbosity, but

rather corresponds to a structural feature of manic speech. On the

other hand, schizophrenics displayed more nodes per word and a

higher average total degree per word than manics. This means

Figure 1. Speech graph analysis in schizophrenia, mania and control reports. A) Subjects were asked to report a recent dream. Each report
was transcribed and parsed into canonical grammatical elements (words translated from Portuguese, elements separated by slashes). Parts related to
dreaming (blue) were sorted from parts related to waking (red), which were considered deviations from the anchor topic. B) Speech graph from the
example shown in A), with edges sequentially numbered. The node ‘‘I’’ appears 3 times in the dream sub-graph (‘‘I walked’’, ‘‘I found’’, ‘‘I hugged’’),
and then once in the waking sub-graph (‘‘I woke up’’). C) Speech graph examples representative of the schizophrenics (subject MG), manics (subject
AB) and controls (subject OR). Graphs plotted using global energy minimum (GEM). The complete database is available as Supporting Information.
doi:10.1371/journal.pone.0034928.g001
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that schizophrenics tended to address topics only once, neither

branching nor recurring, a reflection of the ‘‘poor speech’’ typical

of these patients [1].

It has been recently observed that the amount of loops in a

network is inversely correlated with its dynamical stability [20]. In

our study, the presence or absence of loops is directly related to the

recurrence, or lack thereof, of similar thoughts in the course of the

interviews. The fact that mania reports have more parallel edges

per word than reports from schizophrenics may therefore reflect

the decreased stability of manic speech. On the other hand, the

Figure 2. Local speech graph measures are significantly different for schizophrenics (S), manics (M) and controls (C). Boxplots of
speech graph measures. General measures N (P = 0.0028) and E (P = 0.003). Connectivity-related measures LCC (P = 0.005), LSC (P = 0.0078) and ATD
(P = 0.007 and P = 0.016). Recurrence-related measures PE (P = 0.0031 and P = 0.0143), L2 (P = 0.0025) and L3 (P = 0.005 and P = 0.0160). Waking-related
measures WN (P = 0.0059) and WE (P = 0.0014). Asterisks indicate statistical significance with Bonferroni correction. All the individual raw data and
complete statistical results are presented in Tables S3 and S4, respectively.
doi:10.1371/journal.pone.0034928.g002
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increase in schizophrenics of the amount per word of nodes and

average total degree points to the increased stability of

schizophrenic speech, in comparison with manic speech. These

features likely influence disease course, producing cyclic symptom

changes in manics [3] and persistent symptoms with monotonic

clinical evolution in schizophrenics [3].

Manics produced significantly denser graphs than schizophren-

ics, with significantly smaller diameter and average shortest path.

Small variance characterized both psychotic groups, while controls

yielded a wide range of values with high variance. These results

reveal the strong pathological determination of the global network

measures, which seems to constrain the structure of manic and

schizophrenic speech in opposite ways. In contrast, controls free

from such a determination expressed the global features of speech

with much larger inter-individual differences, suggesting that the

structural variance of speech increases in the absence of

pathological constraints.

Our results connect the quantification of mental disorders with

research on computational semantic analysis, fueled by the

expanding availability of online text corpora and computational

resources [21,22]. The data demonstrate that the alteration of the

thought process manifested in the speech of psychotic patients can

be objectively measured using graph-theoretical tools, developed to

capture analytically some intuitive features of the normal and

dysfunctional flow of thought, such as divergence and recurrence.

The classification accuracy obtained using these graph features

provides validation to the method, as it matches the consensus of

experts. By the same token, the results indicate that the differential

diagnosis of psychosis can be greatly improved by speech graph

analysis. The networks studied here were relatively small, reflecting

the difficulties in obtaining speech graphs from psychotic patients

interviewed during clinical examinations. Future work should

challenge the robustness of our results, assessing their clinical

significance on substantially larger samples. We propose that such a

quantitative approach may soon allow doctors to identify mental

disorders and track the progress of treatment in an automated

manner [23], i.e. through a psychiatric Turing test [24].

Materials and Methods

Subjects
Study approved by the Research Ethics Committee of the

Federal University of Rio Grande do Norte (permit #102/06-

Figure 3. In comparison with schizophrenics, manic patients
had significantly more flight of thoughts (higher rate of dream
report interruptions to comment on waking events). Ratios of
waking nodes/total nodes and waking edges/total edges across groups.
For edges, manics scored significantly higher in this ratio than
schizophrenics (Kruskal-Wallis P = 0.0397, Wilcoxon Ranksum test
P = 0.0146). A non-significant but similar trend was observed for nodes
(Kruskal-Wallis P = 0.0597, Wilcoxon Ranksum test P = 0.0258). Asterisk
indicates statistical significance with Bonferroni correction.
doi:10.1371/journal.pone.0034928.g003

Figure 4. Global speech graph measures were not significantly
different for the different groups. Using the raw data, medians and
variances were very similar across groups.
doi:10.1371/journal.pone.0034928.g004

Figure 5. Schizophrenics produced significantly less words per
report than manics. Boxplots of total number of words per report
across groups. (Kruskal-Wallis test across groups, P = 0.0067; Wilcoxon
Rank Sum test between schizophrenics and manics P = 0.0006; between
manics and controls P = 0.2911, and between schizophrenics and
controls P = 0.0650). Asterisk indicates statistical significance with
Bonferroni correction.
doi:10.1371/journal.pone.0034928.g005

Quantifying Thought Disorder in Psychosis
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98244). As stated by the procedure specifically approved by the

Ethics Committee, written informed consent was obtained from all

subjects after they were read a document with detailed information

about the nature and possible consequences of the study, had

verbally discussed any possible concerns with the experimenter,

and had provided clear indication that they had understood the

procedure. During the psychiatric interview, patients were

examined for major changes in state and level of consciousness

(e.g. drowsiness, torpor), for signs of autopsychic and allopsychic

disorientation (e.g. inability to remember name, age, spatial

localization), and for signs of reduced mnemonic and cognitive

capacity. All psychotic subjects were medicated and out of the

acute psychotic phase at the onset of the study, so typically they

were in good capacity to provide informed consent. Signs of

disorientation or reduced mnemonic capacity were detected in 3

out of 16 psychotic subjects (1 manic and 2 schizophrenics). In the

case of these subjects, the experimenter also obtained written

informed consent on their behalf from their legal guardians (next

of kin). All the signed forms with written informed consent were

archived by the corresponding author. Schizophrenic and manic

patients were pre-diagnosed independently by first response

psychiatrists. All subjects were interviewed and digitally recorded

during daytime by a psychiatrist of our team (NBM). Demographic

and clinical data are shown on Tables S1 and S2.

Interviews for Psychiatric Assessment and Anchor Topic
Interviews began with confirmation of the diagnostics estab-

lished by first-response psychiatrists (‘‘Structured Clinical Inter-

view for DSM-IV’’, SCID Portuguese version) [2]. Due to

diagnostic mismatch, 5 interviews were discarded and substituted.

We also applied the ‘‘Positive and Negative Syndrome Scale’’

(PANSS) [25] and the ‘‘Brief Psychiatric Rating Scale’’ (BPRS)

[26] to further quantify psychiatric symptoms. As expected, the

scores on these scales were strongly correlated across subjects (Fig.

Figure 6. Schizophrenics and manics are better distinguished by normalized speech graph measures than by psychometric scales
BPRS and PANSS. A) Boxplots of normalized data show differences between schizophrenics and manics for N (P = 0.0104), ATD (P = 0.0051), PE
(P = 0.0044), and WE (P = 0.0146). B) Boxplots of BPRS and PANSS scores show significant differences between psychotic patients and controls (S.C
with P = 0.0003, M.C with P = 0.0012; for PANSS: S.C with P = 0.0003, M.C with P = 0.0006). No significant differences were found between
schizophrenics and manics (BPRS S.M with P = 0.1377; PANSS S.M with P = 0.1108). Asterisks indicate statistical significance with Bonferroni
correction. All the individual normalized data and complete statistical results are presented in Tables S3 and S4, respectively.
doi:10.1371/journal.pone.0034928.g006
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S3). Subjects were then requested to report exclusively on their

most recently experienced dream, which served as an anchor

topic. Recordings proceeded without interference from the

interviewer. Interviews lasted 20–60 minutes, yielding in average

84 words per report related to the anchor topic.

Speech Graph Measures
Anchor topic reports were blindly transcribed by 2 different

researchers. Next, the words were converted to canonical forms

(lexemes). The reports were then parsed into grammatical

elements corresponding to subject, verb and object, and were

then converted to graphs. We calculated eleven local graph

measures (see Fig. S1), as follows:

Nodes (N) = Number of elements in N;

Edges (E) = Number of elements in E;

Average Total Degree (ATD) = Mean ki = k in,i+k out,i, where the

in-degree kin,i of the node i is defined as the number of edges

pointing to i; its out-degree k out,i is defined as the number of edges

departing from i;

Largest Connected Component (LCC) = Total number of nodes

comprising the largest sub-graph in which each node is connected

Figure 7. Normalized global speech graph measures were
significantly different between schizophrenics (S) and manics
(M). Boxplots of normalized data show significant differences between
schizophrenics and manics for Density (P = 0.007), Diameter (P = 0.0138)
and ASP (P = 0.0104) with small variance for both groups. In contrast,
control subjects yielded a wide span of values between manics and
schizophrenics, with high variance.
doi:10.1371/journal.pone.0034928.g007

Figure 8. Speech graph measures provide better differential
diagnosis of mania and schizophrenia than standard psycho-
metric scales (BPRS and PANSS). Group sorting using graph
measures as inputs to the NB classifier was excellent to separate
schizophrenics from manics. The measures used as inputs were N, E and
ATD for S x M; N, L1 and L2 for S x C; L1, L2 and L3 for M x C. In contrast,
group sorting using BPRS and PANSS total scores as inputs for the
classifier was successful in separating controls from psychotic patients
(either S or M), but sorting between schizophrenics versus manics (S x
M) was poor.
doi:10.1371/journal.pone.0034928.g008
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to each other one through a path in the sub-graph; the measure

applies to the undirected version of the graph;

Largest Strongly Connected Component (LSC) = Total number

of nodes comprising the largest sub-graph in which all nodes are

mutually reachable, i.e., there is a path from node a to node b, and

there is a path from node b to node a; the measure applies to the

directed version of the graph;

Parallel Edges (PE) = Total number of edges linking the same

pair of nodes more than once;

Loops with 1 Node (L1) = Trace of the adjacency matrix that

represents the graph. Same as self-loops;

Loops with 2 Nodes (L2) = Trace of the squared adjacency

matrix;

Loops with 3 Nodes (L3) = Trace of the cubed adjacency

matrix;

Waking Nodes (WN) = Total number of nodes used to talk

about waking events;

Waking Edges (WE) = Total number of edges used to talk about

waking events.

We also calculated three global measures of the speech graphs

by excluding self-loops and parallels edges and, in the case of DI

and ASP, by further transforming the graphs into derived

networks without directionality:

Density (D) = E9/N2, with E9 = E - (L1+PE);

Diameter (DI) = Length of the longest shortest path between the

node pairs of a network;

Average Shortest Path (ASP) = Average length of the shortest

path between pairs of nodes of a network;

Overall, we calculated 2 general measures (N and E), 3

connectivity-related measures (LCC, LSC, and ATD), 4 recur-

rence-related measures (PE, L1, L2, and L3), 2 waking-related

measures (WN and WE) and 3 global measures (D, DI and ASP).

Since manic reports were significantly wordier than schizophrenic

reports (Fig. 5), we compared the raw data to results obtained by

normalizing each graph measure by the total number of words in

each report. All general and connectivity-related graph measures,

as well as the recurrence-related measure PE and two global

measures (DI and ASP) were calculated using the Network

Analysis Toolkit (http://nwb.cns.iu.edu/). Recurrence-related

measures comprising L1, L2, L3 were calculated using Matlab.

Measures related to wakefulness (WN and WE) were visually

counted. Density was calculated using Excel. Kruskal-Wallis tests

followed by Wilcoxon Ranksum tests with Bonferroni correction

were used to assess significant differences (corrected a= 0.0166).

Automated Classification of Speech Graphs
In the case of small datasets such as those investigated here, the

Naı̈ve Bayes (NB) classifier has been shown to provide superior

performance [27,28]. The NB classifier can be modeled as a

directed acyclic graph, in which all edges go from a single ‘‘root’’

node representing the class to potentially many ‘‘children’’ nodes,

representing the attributes [29]. Let X be a vector of random

variables representing the attribute values, and C be a random

variable representing the class of an instance. Moreover, let

x = (x1,x2,…,xN) be a particular value of the attributes and let c be

a particular class label. It is then possible to use the Bayes’ rule to

estimate the probability of each class based on a given attribute

value [29]. To that end, each classifier attribute corresponded to a

specific speech graph measure (e.g. ATD, LCC, etc) or a given

psychometric measurement (PANSS and BPRS). Class labels

corresponded to the different groups studied (manic, schizophrenic

and control). To address the issue of classifier accuracy, we

compared the group classification obtained by the NB model

[18,19] with four other binary classifiers: Radial Basis Function

(RBF), Multi-Layer Perceptron (MLP), Support Vector Machine

(SVM) and Decision Tree (DT). All the classifiers were

implemented using Weka software [30]. A cross-validation

procedure was implemented to take full advantage of the sample

size. Classifier inputs consisted of graph measures normalized by

the number of words per report; classifier outputs were binary

decisions in the form ‘‘is this graph from a given group or not’’.

After identifying the measures that best separated the groups in

each comparison, the classifier was trained with particular

measure combinations for each comparison: For schizophrenics

versus manics we used N, E and ATD; for schizophrenics versus

controls we used N, L1 and L2; for manics versus controls we used

L1, L2 and L3. To quantitatively distinguish reports from

schizophrenics, manics and controls, receiver operating charac-

teristic (ROC) curves were built based on the outputs of the

classifier [14]. Sensitivity, specificity and the area under the ROC

curve (AUC) were used as a metric of classification quality. The

ROC curve is a plot of sensitivity (true positive rate) on the y axis,

and 1 – specificity (false positive rate) on the x axis. The area under

the ROC curve (AUC) reveals the probability that the classifier

will assign a higher score to a randomly chosen positive instance

than to a randomly chosen negative instance. AUC values around

0.5 mean a random classification, while values above 0.75 indicate

good classification. To verify the agreement between the

diagnostic classifications obtained with DSM IV criteria and

graph measures, we calculated the kappa statistic, an inter-rater

agreement measure for which values around 0.6 indicate a good

agreement, and values above 0.8 indicate excellent agreement

[15].

Supporting Information

Figure S1 Examples of speech graph measures calcu-
lated in this study.
(TIF)

Figure S2 Boxplots of normalized graph attributes
whose differences were not statistically significant.
General attribute E; connectivity-related attributes LCC and

LSC; recurrence-related attributes L2 and L3; and waking-related

attributes WN and WE. Notice that WN and WE, after

normalization for the number of words per report, show a non-

significant M.S trend. P values in Table S4.

(TIF)

Figure S3 BPRS and PANSS scores for all subjects
(N = 24). There was a tight correlation between the BPRS and

PANSS scores across all groups (schizophrenics R2 = 0.9301,

manics R2 = 0.8823, controls R2 = 0.9812).

(TIF)

Table S1 Socio-demographic characteristics including
age (mean age and standard error), sex (absolute
number of subjects and percentage), years of education
(mean years and standard error), and marital status
(absolute number of subjects and percentage). Psychiatric

assessment of psychotic subjects including age of onset (mean age

and standard error) and medication used (absolute number of

subjects and percentage).

(TIF)

Table S2 Socio-demographic characteristics and psy-
chiatric assessment of psychotic subjects for all sub-
jects. Typical anti-psychotics (TAP) included haloperidol,

levomepromazin, and clorpromazin. Atypical anti-psychotics

(ATAP) included olanzapine, risperidone and quetiapine.

(TIF)
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Table S3 Speech graph attributes (raw data) and
psychometric scales BPRS and PANSS. Subjects indicated

by name and surname initials.

(TIF)

Table S4 P values obtained on the Kruskal-Wallis (KW)
test followed by Wilcoxon-Ranksum test with Bonferroni
correction for pairwise group comparisons of raw and
normalized data for schizophrenics (S), manics (M) and
controls (C). Statistically significant differences indicated in red,

near-significant trends indicated in blue.

(TIF)

Table S5 There were no significant correlations be-
tween normalized graph attributes and psychometric
scales (BPRS and PANSS scores). Shown are Rho and P

values of Spearman correlations (corrected a= 0.0166).

(TIF)

Table S6 Classification quality obtained for speech
graph and psychometric measures. Five different binary

classifiers were used: Naı̈ve-Bayes (NB), Support Vector Machine

(SVM), Decision Tree (DT), Multi-Layer Perceptron (MLP), and

Radial Basis Function (RBF).

(TIF)
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