Bone marrow mononuclear cells reduce seizure frequency and improve cognitive outcome in chronic epileptic rats

Gianina Teribile Venturina, Samuel Greggio, Daniel Rodrigo Marinowic, Gabriele Zanirati, Martin Cammarota, Denise Cantarelli Machado, Jaderson Costa DaCosta

Aims: Epilepsy affects 0.5–1% of the world’s population, and approximately a third of these patients are refractory to current medication. Given their ability to proliferate, differentiate and regenerate tissues, stem cells could restore neural circuits lost during the course of the disease and reestablish the physiological excitability of neurons. This study verified the therapeutic potential of bone marrow mononuclear cells (BMMCs) on seizure control and cognitive impairment caused by experimentally induced epilepsy.

Main methods: Status epilepticus (SE) was induced by lithium–pilocarpine injection and controlled with diazepam 90 min after SE onset. Lithium–pilocarpine-treated rats were intravenously transplanted 22 days after SE with BMMCs obtained from enhanced green fluorescent protein (eGFP) transgenic C57BL/6 mice. Control epileptic animals were given an equivalent volume of saline or fibroblast injections. Animals were video-monitored for the presence of spontaneous recurrent seizures prior to and following the cell transplantation procedure. In addition, rats underwent cognitive evaluation using a Morris water maze.

Key findings: Our data show that BMMCs reduced the frequency of seizures and improved the learning and long-term spatial memory impairments of epileptic rats. EGFP-positive cells were detected in the brains of transplanted animals by PCR analysis.

Significance: The positive behavioral effects observed in our study indicate that BMMCs could represent a promising therapeutic option in the management of chronic temporal lobe epilepsy.

© 2011 Elsevier Inc. All rights reserved.

Introduction

Epilepsy is a chronic neurological disorder that affects 0.5–1% of the population worldwide (Engel, 2001; Sander and Shorvon, 1996). The response to therapy in newly diagnosed cases is generally good, but up to 30% of patients cannot achieve acceptable seizure control despite adequate trials with potentially effective antiepileptic agents (Loscher, 2002). In addition, there is the risk of a large number of adverse effects, and surgical treatment is limited due to possible brain function impairments.

Temporal lobe epilepsy (TLE) is the most frequent refractory form of epilepsy in adult patients (Engel, 2001). Patients with TLE often show extensive cell loss in temporal brain areas, especially in the hippocampus; this characterizes mesial temporal sclerosis (MTS)-associated TLE. The main physiopathological findings observed in MTS are neuronal loss, reactive gliosis, mossy fiber sprouting, dendritic injury and neurogenesis (Babb et al., 1991; Blumcke et al., 1999). Several clinical observations suggest that epilepsy is more complex than recurrent seizures alone and that progressive cognitive impairment should be included in the sequelae of refractory TLE, particularly when associated with hippocampal sclerosis (Hermann et al., 2002; Hermann et al., 2006; Oyegbile et al., 2006; Oyegbile et al., 2004).

Intense neuronal loss is intimately related to EMT and chronic epileptic activity (Blumcke et al., 1999; Blumcke et al., 1996). Thus, the replacement of cells lost during the course of disease or the replacement of physiological mediators produced by the cells may represent effective strategies in the treatment of refractory epilepsy. Transplanted stem cells could exert their effects not only by differentiating but also by other means such as cell fusion, the release of trophic factors or cytokines, or even by activating endogenous neural stem cells (Terada et al., 2002).

A number of cell transplantation strategies have been studied in experimental models of epilepsy (Carpentino et al., 2008; Chu et al., 2004; Gernert et al., 2002; Hattiangady et al., 2008; Huber et al., 2001;
Jing et al., 2009; Li et al., 2009b; Ruschenschmidt et al., 2005; Shen et al., 2010; Zaman et al., 2000). Recently, Costa-Ferro et al. (2010) showed that bone marrow mononuclear cells (BMMCs) can prevent the development of chronic seizures, reduce neuronal loss, and influence the reorganization of the hippocampal network in the acute phase of experimental epilepsy.

However, the therapeutic potential of BMMCs in chronic epileptic disorders remains unknown. To explore this possibility, we transplanted lithium–pilocarpine-treated rats with the mononuclear cell fraction of the bone marrow of enhanced green fluorescent protein (eGFP) transgenic C57BL/6 mice and investigated its effects on seizure frequency and duration as well as cognitive outcome in chronic epilepsy.

Material and methods

Animals

Seventy male Wistar rats (30 days old, 90–120 g) and 15 transgenic eGFP+ C57BL/6 mice (60 days old, 25–30 g) were used in this study. All animals were kept under environmentally controlled conditions (12-hour light/dark cycle; 22–24°C) and were given free access to food and water. This study was approved by the Animal Care and Use Committee of Pontifícia Universidade Católica do Rio Grande do Sul. A timeline of the drug administrations, treatments and tests of animals is shown in Table 1.

Status epilepticus (SE)

Experimental SE was induced by lithium–pilocarpine injection (127 mg/kg, i.p. and 60 mg/kg, i.p.; respectively) (Cavalheiro et al., 1991; Turski et al., 1983). Animals were treated with 1 mg/kg methylscopolamine prior to pilocarpine injection to reduce peripheral cholinergic effects. The duration of SE was controlled with diazepam (10 mg/kg, i.p.; 90 min after SE onset). Seizures were scored using the Racine scale (Racine, 1972), and only animals that were scored grade 5 were included in this study. Control animals received saline instead of pilocarpine.

BMMC and fibroblast preparation

BMMCs were obtained from C57BL/6 mice expressing eGFP, which was used as a reporter of transplanted cells (Okabe et al., 1997). Fresh bone marrow was extracted from humeri, femora and tibiae with a 26 G needle containing heparin (10,000 U in 50 ml of DPBS). The material was centrifuged at 400 × g for 10 min. The cell pellet was resuspended with Roswell Park Memorial Institute (RPMI-1640) medium and fractionated on a density gradient generated by centrifugation at 400 × g over a Ficoll-Paque solution (Histopaque 11191 Sigma Aldrich, St. Louis, MO). The mononuclear fraction over the Ficoll-Paque layer was collected and washed twice with DPBS. Cell concentrations were determined with a Neubauer-counting chamber, and the number of viable cells was determined by Trypan Blue exclusion. For the detection of surface antigen, BMMCs were incubated with conjugated antibodies against CD34, CD11b, CD117, CD45 and Sca1. Labeled cells were collected and analyzed using a FACSCalibur cytometer. To ensure a cellular control for BMMC transplantation, we used fibroblasts that were obtained from NIH-3T3 cells line (American Type Culture Collection – ATCC no. CRL-1658™ Rockville, MD). Fibroblasts were cultured with DMEM medium (Sigma Aldrich, St. Louis, MO) supplemented with 10% bovine fetal serum, penicillin (100 U/ml) and streptomycin (100 U/ml) at 37 °C in a humid atmosphere containing 5% CO2. The culture medium was replaced every 3 days, and cells were split whenever they reached 70% confluence. Cell viability was evaluated by Trypan Blue exclusion.

Transplantation of BMMCs or fibroblasts

After 7 days of video-monitoring, surviving lithium–pilocarpine animals that showed spontaneous recurrent seizures (SRS) were divided into three groups: Pilo+Saline (lithium–pilocarpine-treated rats receiving saline injection, n = 8); Pilo+BMMC (lithium–pilocarpine-treated rats transplanted with BMMC, n = 8) and Pilo+Fib (lithium–pilocarpine-treated rats transplanted with fibroblasts, n = 7). Control non-epileptic animals were assigned to the following groups: Saline (saline-treated rats receiving saline injection in replacement of both pilocarpine and BMMC, n = 8) and Saline+BMMC (saline-treated rats transplanted with BMMC, n = 8). The BMMC or fibroblast suspension was prepared for transplantation in saline at a concentration of 1 × 107 cells in 200 μL total volume. The cells or saline were administered via tail vein injection 22 days after SE. An additional cohort of eight epileptic animals were injected with BMMCs as described above but were sacrificed 24 h, 2 weeks or 1 month after transplantation, and brain samples were collected for PCR. Animals that did not exhibit seizures during the first 7 days of video monitoring were not included in this study.

Monitoring of spontaneous recurrent seizures (SRS)

Beginning 15 days after SE, the surviving animals were video monitored 12 h/day (6-h light cycle and 6-h dark cycle) for 7 days. This period was called “Pre-transplant” (Pre-T). On the seventh day of monitoring (22 days after SE), animals were given BMMCs, fibroblasts or saline. Monitoring was maintained for another 14 days after transplantation. For data analysis, the post-transplant period was divided into 2 sub-periods of 7 days each: “Post-transplant 1” (Post-T1) and “Post-transplant 2” (Post-T2). Spontaneous seizures corresponding to grade 5 according to Racine’s scale were considered for statistical analysis. The observer was blind to the treatment (Arida et al., 1999).

Training in the spatial version of the Morris water maze (MWM)

The MWM was used to test spatial memory after BMMC, fibroblast or saline administration (Bonini et al., 2007; Greggio et al., 2011; Morris, 1984). Briefly, training was carried out for five consecutive days. Rats were trained for eight trials a day, during which the platform location remained constant. Each trial consisted of a swim followed by a 30-s stay on the escape platform. Animals were given 60 s to find the submerged platform and were guided to it by the experimenter when they were unable to find it. Time spent to find the platform was defined as escape latency. A randomly chosen start position was used in each trial. On day 6, the platform was removed, and long-term spatial memory was evaluated during a probe test. The rats were allowed 60 s of free swimming. The latency to swim to the location where the platform was previously located, the time spent in the quadrant where the platform was previously located (training quadrant) and the number of crossings over an imaginary annulus centered at that location were measured and used as indicators of memory retention. Swimming velocity was also analyzed.

### Table 1

<table>
<thead>
<tr>
<th>Day</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lithium administration</td>
</tr>
<tr>
<td>2</td>
<td>Pilocarpine-induced SE</td>
</tr>
<tr>
<td>15–21</td>
<td>Video-monitoring of SRS (Pre-T)</td>
</tr>
<tr>
<td>22</td>
<td>BMMC, saline or fibroblast administration</td>
</tr>
<tr>
<td>23</td>
<td>Nested-PCR (24 h post-transplantation)</td>
</tr>
<tr>
<td>23–29</td>
<td>Video-monitoring of SRS (Post-T1)</td>
</tr>
<tr>
<td>30–37</td>
<td>Video-monitoring of SRS (Post-T2)</td>
</tr>
<tr>
<td>36</td>
<td>Nested-PCR (2 weeks post-transplantation)</td>
</tr>
<tr>
<td>38–45</td>
<td>Morris Water Maze task</td>
</tr>
<tr>
<td>52</td>
<td>Nested-PCR (1 month post-transplantation)</td>
</tr>
<tr>
<td>82</td>
<td>Nested-PCR (2 months post-transplantation)</td>
</tr>
</tbody>
</table>
EGFP detection using Polymerase Chain Reaction (PCR)

We performed PCR analysis to identify the presence of transplanted BMMCs in the brains of transplanted animals. We used the forward primer 5'-ttgaattccgccatctgtgagc-3' and the reverse primer 5'-ttgaattccgctgtggc-3' complimentary to an eGFP DNA sequence, and reamplified with the forward primer 5'-gggcaaacgctgcgctga-3' and the reverse primer 5'-agttggtgggcgttga-3' using a nested PCR technique. Animals were sacrificed, and samples were collected 24 h, 2 weeks, and 1 and 2 months after BMMC transplantation. A positive control sample (eGFP DNA extracted from C57BL/6-eGFP mice) and a negative control (without any DNA) were assayed along with experimental samples in every reaction. Amplified products were detected by gel electrophoresis (2% agarose containing ethidium bromide) and visualized under ultraviolet light (Okabe et al., 1997).

Statistical analysis

Data are presented as means ± standard deviation (S.D.) or means ± standard error of the mean (S.E.M.) as indicated in the figure legends. A two-way analysis of variance (ANOVA) followed by the Bonferroni post hoc test was used to analyze SRS frequency and duration. Data obtained in the MWM were analyzed using a two-way ANOVA followed by the Bonferroni post hoc test or a one-way ANOVA followed by the Newman–Keuls post hoc test. Analyses were performed using Prism-Graph 5.0 software (Graph-Pad Software, San Diego, CA). A statistical significance level of α = 0.05 and p < 0.05 was applied to all tests.

Results

BMMCs reverse the cognitive deficit associated with the lithium–pilocarpine model in the MWM

To evaluate whether BMMCs can reverse the cognitive deficits associated with the lithium–pilocarpine model of epilepsy, we employed a MWM massed training protocol (Bonini et al., 2007; Morris, 1984). We observed a significant difference in the learning performance among experimental groups in the 5-day training session [F(3, 140) = 0.98, p = 0.47, Fig. 2A]. As expected, lithium–pilocarpine-induced epilepsy impaired spatial memory acquisition in the MWM. BMMC administration decreased escape latency in lithium–pilocarpine-treated animals. BMMCs did not affect the performance of Saline + BMMC animals because we did not observe any significant difference in these animals compared to controls.

A 60-s probe test in the absence of the escape platform carried out 24 h after the last training session confirmed that lithium–pilocarpine impairs the acquisition of spatial memory and that BMMCs reverse this effect. Lithium–pilocarpine-treated animals spent less time swimming in the target quadrant (Fig. 2B, p < 0.001), crossed the imaginary annulus fewer times (Fig. 2C, p < 0.001) and displayed significantly longer latencies to swim over the previous location of the platform (Fig. 2D, p < 0.001) when compared to the Saline group. Conversely, during the probe test, Pilo + BMMC rats showed a preference for the training quadrant (Fig. 2B, p < 0.05 vs. Pilo). Additionally, Pilo + BMMC rats crossed an imaginary annulus centered at the previous location of the escape platform more times than Pilo animals (Fig. 2C, p < 0.01), and they showed significantly shorter latencies to swim over the previous location of the escape platform (Fig. 2D, p < 0.01 vs. Pilo). In addition, the escape latency observed in lithium–pilocarpine-treated rats transplanted with BMMC was comparable to that of the Saline and Saline + BMMC groups (Fig. 2D). There was no significant difference in swimming speed among the experimental groups (data not shown). Unfortunately, Pilo + Fib...
animals were also trained, but they were not able to complete the MWM task due to the constant occurrence of SRS.

**EGFP was detected in samples obtained from the brains of BMMC-transplanted animals**

We employed a nested PCR analysis to verify whether eGFP DNA from BMMCs could be detected in the brains of transplanted animals. This analysis was performed to elucidate whether the observed beneficial behavioral effects were associated with the migration of cells to the injured brain. Amplified eGFP DNA was found in the brain of animals 24 h, 2 weeks and 1 month post-transplantation. At 2 months after transplantation, eGFP was no longer detected in sampled brain tissue (Fig. 3).

**Discussion**

In the present study, we demonstrated that BMMC administration to chronic epileptic rats decreases the frequency but not the duration of SRS. We also showed that cell transplantation prevents the learning and memory deterioration due to lithium–pilocarpine induced SE. The positive outcomes observed in our study could be correlated to the presence of transplanted cells into the injured epileptic brain. This is a pioneering study providing behavioral evidence supporting cell-based therapy for chronic epilepsy.

Because seizures are intimately associated with epilepsy, we aimed to verify whether BMMCs reduce the frequency and/or duration of recurrent generalized seizures in chronic epileptic rats. Our results demonstrate that seizures were gradually reduced in Pilo + BMMC rats compared to those receiving pilocarpine alone (Pilo group) or fibroblasts (Pilo + Fib). A number of approaches have been tested using cell therapy in epilepsy models. Ruschenschmidt et al. (2005) have demonstrated that embryonic stem cell–derived neurons display characteristic properties of neurons when transplanted in the hippocampi of chronic epileptic animals. The same grafting technique using striatal precursors, adult neural stem cells or hippocampal stem cells in an acute period of the disease reduced seizure frequency in chronic epilepsy (Hattiangady et al., 2008; Jing et al., 2009; Shen et al., 2010). Choosing a different method of administration, Chu et al. (2004) evaluated the effects of intravenously injected neural stem/
progenitor cells on SRS. In that work, cells were also administered during the acute period of epilepsy. Twenty-eight to 35 days later, only 13% of the animals showed SRS, with a marked reduction in seizure frequency. More recently, Costa-Ferro et al. (2010) showed that BMMCs intravenously injected in rats 24 h post-SE are able to suppress early SRS, reducing epileptogenesis (Costa-Ferro et al., 2010). In the mentioned study only 25% of the transplanted animals had SRS 120 days after BMCM administration. In addition, the authors also showed a protective effect on long-term potentiation (LTP). It must be highlighted that in only one of these studies was cell transplantation performed during chronic epilepsy (Ruschenschmidt et al., 2005), and this study did not evaluate seizure frequency.

Compared to the literature, especially concerning the intravenous administration of cells, we observed a less pronounced reduction in SRS frequency in the present study. This could be due to the fact that, in contrast to the above-mentioned works, we administered the cells 22 days after SE, which allowed us to analyze their effect on chronic epilepsy. Considering that transplanted cells could have found very different niches, it was expected that we would observe a less dramatic reduction in SRS frequency. In a chronic epileptic rat, transplanted cells would have to regenerate a more extensive neuronal area to compensate for the cells lost during the course of either SE or SRS. Conversely, in an acute epileptic brain, cells could exert their action by preventing further neuronal death. Therefore, other studies set out to verify the neuroprotective effect of stem cells from different sources and their ability to prevent the development of SRS, suppressing epileptogenesis. In contrast, our purpose was to analyze the potential of BMMCs in healing an established epileptic brain. Our results are relevant to stem cell transplants during the chronic epileptic period. Because most patients that seek medical attention have a seizure history, the chronic epilepsy period would be the most suitable for translational cell therapy-based interventions.

In another set of experiments, we observed that BMMCs improved cognitive deficits in the MWM task. Cognitive deficits are present in experimental epileptic animals and in patients with TLE, probably due to hippocampal cell loss (Detour et al., 2005; Hermann et al., 2006). For this reason, we employed the spatial version of the MWM task to analyze whether BMMCs reverse cognitive deficits associated with epilepsy. It is known that pilocarpine-treated epileptic rats display poor performance on this task (Detour et al., 2005). We observed that epileptic animals that received BMMCs performed better in the MWM, indicating that transplanted cells have a palliative effect on the mnemonic impairment associated with lithium–pilocarpine. To our knowledge, no other studies have used memory tasks to measure functional improvement or preservation after cell therapy in epilepsy. Nonetheless, our results are partially consistent with the data previously obtained by our group, showing that BMMCs are able to preserve LTP, which is an electrophysiological correlate of memory (Costa-Ferro et al., 2010).

Here, we show that EGFP DNA from intravenously injected BMMCs can be found in the epileptic brain 24 h, 2 weeks and 1 month post-transplantation. However, 2 months after the BMMCs administration, EGFP was no longer detected. In a previous study, we showed that the number of cells that enter the epileptic brain after intravenous injection is small. Nonetheless, the cells equally survive for as long as 120 days for either allogenic or xenogenic transplantsations (Costa-Ferro et al., 2010). Thus, it is likely that EGFP is undetectable 2 months after transplantation because of the small number of cells that gain access to the brain rather than because of an immunological response against xenotransplanted cells. In addition, it can be assumed that the blood–brain barrier (BBB) could limit the access of an increased number of cells to the injured epileptic brain. However, recent data show that beneficial effects observed after permeation of the BBB do not seem to relate to the grafting of an increased amount of cells – which were only sporadically detected in either animals that received mannitol or not – but rather to other mechanisms such as the up-regulation of neurotrophic factors (Borlongan et al., 2004; Yasuhara et al., 2010).

Our data also show that intravenously injected BMMCs from eGFP transgenic mice enter the brain of epileptic rats, reduce SRS frequency and facilitate spatial learning. However, the mechanisms that underlie these functional improvements remain unclear. The bone marrow is a permanent source of stem cells (Korbling and Estrov, 2003). Several studies have demonstrated that BMMCs grafted in the central nervous system express microglial and neuronal markers (Brazelton et al., 2000; Eglitis and Mezey, 1997; Mezey et al., 2000). In addition, BMMC transdifferentiation into neurons was observed in human tissue (Cogle et al., 2004). However, it is possible that BMMCs could exert their effects by mechanisms other than transdifferentiation. Considering that epilepsy has an important inflammatory component (Vezzani and Granata, 2005), the modulation of this component by stem cells could represent an important aspect in the mechanism of stem cell transplantation (Louboutin et al., 2011; Ohtaki et al., 2008; Park et al., 2009; Pluchino et al., 2005; Schwarting et al., 2008). On the other hand, the transplanted cells could provide the epileptic brain with a number of trophic factors (Borlongan et al., 2004). It has been shown in the hippocampus of epileptic rats that trophic factors such as fibroblast growth factor 2 (FGF-2), brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF) can reduce epileptogenesis (Eves et al., 2001; Kanter-Schlifke et al., 2007; Rao et al., 2006). Furthermore, growth factors that have been identified in hematopoiesis and angiogenesis – such as erythropoietin (EPO) and granulocyte colony-stimulating growth factor (G-CSF) – are currently being re-considered as therapeutic agents in a number of neurological diseases (Chu et al., 2008; Li et al., 2009a; Maurer et al., 2008; Minnerup et al., 2008). Additionally, it must be noted that chronic temporal lobe epilepsy is associated with decreased neurogenesis (Hattiangady et al., 2004), which can contribute to the persistence of seizures and cognitive deficits. Indeed, during chronic epilepsy, the levels of several trophic factors that play a role in neural stem cells proliferation decrease (Shetty et al., 2003). Thus, providing the epileptic brain with a means to recover the process of neurogenesis (e.g. via stem cell administration) might be beneficial in the treatment of epilepsy.

Conclusion

Our study provides evidence that intravenously administered BMMCs can reduce seizure frequency and ameliorate learning and spatial memory impairments in chronic epileptic rats. Here, we show for the first time that BMMCs have a therapeutic effect on chronic epilepsy and on lost cognitive functions following cell transplantation. Further studies to elucidate the mechanisms by which transplanted cells exert their effects are needed. Nonetheless, the positive behavioral effects we observed represent a step toward BMMC transplantation becoming an option for the management of chronic epilepsy.

Conflict of interest statement

The authors certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.

Acknowledgments

This work was supported by research grants from the National Council of Scientific and Technological Development (CNPq) through the Department of Science and Technology of the Ministry of Health (Decit – Ministério da Saúde), Pandurata SA, Gama e Souza and the Paraná University Foundation (FUNPAR). J.C. da Costa, M. Cammarota and D.C. Machado are researchers of the CNPq. G.T. Venturin and S. Greggio are recipients of PhD degree fellowships from Coordination for the Improvement of Higher Education Personnel (CAPES) and CNPq (Brazil). The authors wish to thank professors Ricardo Ribeiro Santos and Milena Soares, who provided the eGFP transgenic mice,
and the helpful assistance of Simone Denise Salamoni and Daniela Souza de Abreu.

References


