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Abstract—Even though there is great regional variation in the
distribution of inhibitory neurons in the mammalian isocor-
tex, relatively little is known about their morphological differ-
ences across areal borders. To obtain a better understanding
of particularities of inhibitory circuits in cortical areas that
correspond to different sensory modalities, we investigated
the morphometric differences of a subset of inhibitory neu-
rons reactive to the enzyme nicotinamide adenine dinucle-
otide phosphate diaphorase (NADPH-d) within the primary
auditory (A1), somatosensory (S1), and visual (V1) areas of
the rat. One hundred and twenty NADPH-d-reactive neurons
from cortical layer IV (40 cells in each cortical area) were
reconstructed using the Neurolucida system. We collected
morphometric data on cell body area, dendritic field area,
number of dendrites per branching order, total dendritic
length, dendritic complexity (Sholl analysis), and fractal di-
mension. To characterize different cell groups based on mor-
phology, we performed a cluster analysis based on the pre-
viously mentioned parameters and searched for correlations
among these variables. Morphometric analysis of NADPH-d
neurons allowed us to distinguish three groups of cells, cor-
responding to the three analyzed areas. S1 neurons have a
higher morphological complexity than those found in both A1
and V1. The difference among these groups, based on cluster
analysis, was mainly related to the size and complexity of
dendritic branching. A principal component analysis (PCA)
applied to the data showed that area of dendritic field and
fractal dimension are the parameters mostly responsible for
dataset variance among the three areas. Our results suggest
that the nitrergic cortical circuitry of primary sensory areas of
the rat is differentially specialized, probably reflecting pecu-
liarities of both habit and behavior of the species. © 2011
IBRO. Published by Elsevier Ltd. All rights reserved.
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Since Santiago Ramoén y Cajal, the neuron is considered
the elementary unit of the brain (Shepherd, 1991). The
view of the neocortex as a uniform structure, being com-
posed of the same neuronal modules distributed along its
surface, has held its appeal for many years (Szentagothai,
1978; Rockel et al., 1980), even with early evidence point-
ing to a noticeable variation in regional and species struc-
ture mainly of excitatory neurons (DeFelipe and Jones,
1988). Despite many setbacks, the search for such a ca-
nonical microcircuit arranged along the cortex with crystal-
line regularity has persisted (Douglas and Martin, 2007).
Lately, though, evidence has shown systematic regional
differences in cell density across cortical areas and spe-
cies (Collins et al., 2010) and also in the morphological
organization of both excitatory (Jacobs et al., 2001; Elston
et al., 2005, 2006a) and inhibitory cortical circuits (Bidmon
et al., 1997; Somogyi et al., 1998; Barone and Kennedy,
2000; Freire et al., 2007). Pyramidal cells, for instance,
which comprise more than 70% of the neurons in the
cerebral cortex (DeFelipe and Farifias, 1992), differ in size,
branching pattern, and number of dendritic spines in dis-
tinct cortical areas (Elston, 2002, 2003). This has been
observed in rodent (Benavides-Piccione et al., 2006; EI-
ston et al., 2006b; Chen et al., 2009) and primate species
(Elston et al., 2006a), including humans (Jacobs et al.,
2001).

Similar to pyramidal cells, inhibitory neurons are het-
erogeneously distributed across distinct cortical regions as
well (DeFelipe, 1993a, 1997), acting as modulators/inhib-
itors of brain activity, contributing to regional differences in
cortical function (DeFelipe, 2002). A very simple and ro-
bust technique, nicotinamide adenine dinucleotide phos-
phate diaphorase (NADPH-d) histochemistry (Thomas and
Pearse, 1964), reveals a subset of GABAergic interneu-
rons (Valtschanoff et al., 1993), corresponding to nearly
2% of the entire pool of cortical neurons (Gabbott and
Bacon, 1995). NADPH-d cells coexpress differentially other
substances in the rodent cortex, such as somatostatin,
neuropeptide Y (NPY), substance P (Aoki and Pickel,
1990; Gonchar et al., 2007; Kubota et al., 2011), and the
calcium-binding proteins calbindin, calretinin, and parval-
bumin (Lee et al., 2004; Lee and Jeon, 2005), although
such colocalization seems to vary depending on the spe-
cies and the cortical area evaluated (Druga, 2009). In
addition, these neurons are an important source of nitric
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oxide (NO), given the well-documented colocalization be-
tween NADPH-d and nitric oxide synthase (NOS) enzymes
in the brain (Dawson et al., 1991; Hope et al., 1991).
According to their morphological characteristics, NADPH-d
cells can be further divided into two subgroups, based
mainly in the appearance of the dendritic tree: type | cells,
which possess large cell bodies and a heavily stained
dendritic tree, and type Il cells, smaller and devoid of
visible dendrites (Lith et al., 1994; Sandell, 1986; Freire et
al., 2004).

Despite prior investigations of the areal distribution of
NADPH-d neurons (Sandell, 1986; Yan et al., 1996;
Franca et al., 1997, 2000; Yan and Garey, 1997; Barone
and Kennedy, 2000; Pereira et al., 2000; Hassiotis et al.,
2005), no study has yet addressed the existence of any
systematic variation in NADPH-d neuronal morphology
across different primary areas. Based on the previously
mentioned areal and morphological neuronal variations
across brain regions, a re-examination of cerebral cortex
architecture is stoutly recommend to get a better under-
standing of species specializations and evolutionary trends
(Kaas, 2005; Krubitzer, 2009).

In the present work, we examined the morphological
characteristics of layer IV NADPH-d neurons in three pri-
mary areas of the adult rat: primary somatosensory (S1),
visual (V1), and auditory (A1) cortices. We performed our
analysis in tangential sections because only in this way all
cortical areas could be evaluated in a single section. We
evaluated only layer IV neurons because a specific laminar
position could be unambiguously attributed only to them,
due to the intense neuropil staining characteristic of this
layer in primary sensory areas. In rat S1, only labeled
neurons located inside barrels were reconstructed to com-
pare with those in A1 and V1. Septal cortex between
barrels was excluded from this analysis because it displays
functional and anatomical characteristics (Hayama and
Ogawa, 1997; Kim and Ebner, 1999; Alloway, 2008) that
might disqualify this region from being considered true
primary sensory cortex (Kaas, 1983; Krubitzer and Hunt,
2007). Multivariate analysis of type | neurons accounted
for different morphological parameters, and revealed that
NADPH-d neurons were systematically different across
different primary sensory areas. According to our results,
neurons in S1 are more complex than those both in A1 and
V1. This finding suggests the existence of a specialized
and differentiated nitrergic cortical circuitry for each sen-
sory modality.

EXPERIMENTAL PROCEDURES
Animals and experimental procedures

Seven adult male Wistar rats (Rattus rattus) (325+25 g), obtained
from the Central Animal Facility of the Federal University of Para
(UFPA) were used. All efforts were made to avoid animal suffering
and to reduce the number of specimens used. All experimental
procedures were carried out strictly in accordance with the Na-
tional Institute of Health Guide for the Care and Use of Laboratory
Animals (NIH Publications No. 80—23), under license of the Ethics
Committee on Experimental Animals of the UFPA.

The animals were deeply anesthetized with a mixture of ket-
amine chloridrate (2.5 mg/kg) and xylazine chloridrate (1 mg/kg)
(i.p.) and perfused transcardially with 0.9% heparinized saline,
followed by 4% paraformaldehyde (Sigma Company, St Louis,
MO, USA) in 0.1 M phosphate buffer (PB), pH 7.4. After craniot-
omy, the brain was weighed, photographed, and the left hemi-
sphere was separated from subcortical structures, flattened be-
tween two glass slides and immersed in 0.1 M PB overnight. The
cortical sheet was then sliced tangentially at 100 um with a
vibratome (Pelco International, Series 1000, Ted Pella Inc., Red-
ding, CA, USA). The resulting sections were washed three times
in 0.1 M PB, pH 7.4 before histochemical processing. For
NADPH-d histochemistry (indirect method) the sections were in-
cubated in a solution containing 0.6% malic acid, 0.03% nitroblue
tetrazolium, 1% dimethylsulfoxide, 0.03% manganese chloride,
0.5% B-NADP and 1.5-3% Triton X-100 in 0.1 M Tris buffer, pH
8.0 (Scherer-Singler et al., 1983). The reaction was monitored
every 30 min to avoid overstaining and was interrupted by rinsing the
sections in Tris buffer (pH 8.0). Sections were incubated in the same
solution for all animals. The duration of the histochemical reaction
ranged from 5 to 6 h. Finally, all sections were mounted onto gela-
tinized glass slides, air-dried overnight, dehydrated through a series
of graded alcohols and coverslipped with Entellan (Merck, Germany).
All reagents were purchased from the Sigma Company, USA.

Flattening of lissencephalic brains do not induce significant
anamorphosis in the dorsolateral cortical surface (see Freire etal.,
2010). In the present study, brain baseotomy was done in such
way that the dorsolateral cortical surface becomes parallel to the
stage of the sliding microtome and no discontinuity was observed
in the flattened piece of cortex. For that reason no compensation
was applied to the reconstructions.

Reconstruction procedures, qualitative and
quantitative analysis

NADPH-d—-labeled sections were qualitatively surveyed under
light microscopy and images were obtained with a digital camera
(CX9000, MBF Bioscience Inc., Williston, VT, USA) attached to an
optical microscope (Nikon Eclipse 80i, Tokyo, Japan). Neurons
from areas A1, S1, and V1 were also photographed to illustrate
their morphologies. Only the contrast, and/or brightness of pic-
tures were adjusted using Photoshop CS (Adobe Systems Inc.,
San José, CA, USA).

Three-dimensional (3D) reconstructions of NADPH-d type |
neurons from areas S1, A1, and V1 (n=40 cells for each area)
were performed with the Neurolucida system (MBF Bioscience
Inc.) using a 60x-oil objective. Cells were selected for reconstruc-
tion depending on the integrity of the dendritic arborization in a
single histological section. Only cells with unequivocally complete
dendritic arborizations were included for analysis (more distal
dendrites were typically thin, presenting a round tip). Cells whose
dendrites seemed to be artificially cut or apparently not fully re-
acted were not included. Seven morphometric parameters were
evaluated quantitatively in the reconstructed neurons: (1) area of
dendritic arborization (defined by the polygon joining the outer-
most distal tips of the dendrites, in um?); (2) area of cell body, in
wm?; (3) number of dendritic branches per order; (4) dendritic
length (length by dendrite order, and total length—sum of length of
all dendrites); (5) branching complexity, using Sholl analysis
(Sholl, 1953), with concentric circles spaced 25 um from each
other; (6) convex hull factor, a measure of dendritic coverage; and
(7) fractal dimension (D). Fractal analysis was performed with the
Scion Image software (Scion Corporation, Frederick, MD, USA),
whereas the other measurements were obtained with the Neuro-
lucida Explorer software package (MBF Bioscience Inc.).

For measurements of fractal dimension, we chose the dilation
and the mass radius methods because they are the most sensitive
methods (see Jelinek and Fernandez, 1998 for details). In brief,
the dilation method determines D for each cell by overlaying the
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original dendritic arborization with successively larger pixel arrays
(dilation) and computing the relationship between the total den-
dritic length of each successive image with respect to the increas-
ing width of the array (Jelinek and Fernandez, 1998). The mass-
radius method, in turn, determines D from the relationship be-
tween the area of the image located within a sphere or circle of
increasing radius covering the image, from the center (cell body)
to the periphery (distal dendrites) of the image (Jelinek and Fer-
nandez, 1998). To characterize distinct cell groups based on
morphology, we performed a cluster analysis (Euclidean distance,
complete linkage) (Schweitzer and Renehan, 1997) using area of
dendritic arborization, cell body area, number of dendrites by
order, convex hull factor, and fractal dimension as parameters.
The resulting group distribution was submitted to a forward step-
wise discriminant function analysis using the software Statistica
6.0 (StatSoft Inc., Tulsa, OK, USA) to determine which variables
better discriminate the groups, a method successfully used to
define clusters of neurons (Freire et al., 2010) and axon terminals
(Rocha et al., 2007). In brief, we applied this multivariate statistical
procedure to our sample to search for possible classes. The
classes suggested by cluster analysis were assessed by a forward
stepwise discriminant function analysis, a method used to deter-
mine which variables discriminate between two or more naturally
occurring groups. The basic idea underlying this procedure is to
determine whether groups differ with regard to the mean of a
variable and then to use that variable to predict group member-
ship. The software used in the present work (Statistica) performed
comparisons between a matrix of total variances and covariances,
as well as between matrices of pooled within-group variances and
covariances. These matrices were compared via multivariate F-
tests to determine whether or not there are any significant differ-
ences (with regard to all variables) between groups. In the forward
stepwise discriminant function analysis, the computer program
“builds” a model of discrimination step-by-step. In this model, at
each step, the software reviews all variables and evaluates which
one will contribute most to the discrimination between groups. We
applied this procedure to morphological variables to determine which
variables provided the best separation of classes suggested by clus-
ter analysis. Additionally, arithmetic mean and standard deviation
were calculated for the variables chosen as best predictors for
groups.

In addition, a principal component analysis (PCA) was em-
ployed to decrease data dimensionality and allow intrinsic com-
parison among morphometric variables in the selected areas us-
ing Matlab software (the MathWorks Inc., Natick, MA, USA). The
normalized data from PCA analysis were obtained by dividing the
values of each group by their respective standard deviation.

For the statistical comparison amongst groups, we used both
a non-parametric Kruskal-Wallis test and Pearson correlation
followed by the Bonferroni post hoc test with significance level set
at 95% («=0.05). Average values were referred to as mean*
standard error of the mean (SEM). To avoid introduction of bias
during the process of digitalization, only one person conducted all
reconstructions. The data obtained were then analyzed indepen-
dently by two different persons, one of who was unaware of the
data’s provenance (blind analysis). Afterward, both analyses were
compared to check for differences.

Reconstructions of neurons evaluated in the present work will
be publicly available for download at http://neuromorpho.org, a
free online repository service for digitally reconstructed neuronal
structures (Ascoli et al., 2007).

RESULTS
General pattern of NADPH-d reactivity

The tangential distribution of NADPH-d—reactive neuropil
across layer IV allowed the identification of cortical areas

A1, S1, and V1 (Fig. 1A). The boundaries and relative
location of these areas were congruent with previously
published reports (Woolsey, 1967; Wallace, 1987; Remple
et al., 2003).

Four distinct fields were identified in S1, corresponding
to the head, forelimb, hind limb, and trunk representations.
The head representation could be further divided into sub-
fields representing the whisker pad (posteromedial barrel
subfield—PMBSF) and the upper and lower lips (Fig. 1A).
Representations of hind limb and trunk lie more medially
while face and head are located more laterally, in an
upside-down orientation (Santiago et al., 2007). All repre-
sentations (except for the trunk) had an intrinsic modular
organization composed of barrels and septa, as previously
revealed by histological (Welker and Woolsey, 1974) and
histochemical methods (Franca and Volchan, 1995).

The auditory cortex was identified as an oval-shaped
region located laterally from the head representation in S1,
whereas the primary visual area corresponded to a “v-
shaped” region located at the posterior pole of the cortex
(Fig. 1A).

Qualitative aspects and quantitative analysis of
NADPH-d type | neuronal morphology

Two types of NADPH-d-reactive neurons were readily
identified in the rat’s brain: type | and type Il cells (Luth et
al., 1994). Both groups correspond to non-pyramidal neu-
rons with distinct labeling patterns (Fig. 2A). Briefly, type Il
neurons had a small cell body and a faintly labeled or even
absent dendritic arborization. So it was rather difficult to
classify them due to their diminished body size and the
absence of most dendritic detail (see Fig. 2A). Due to the
lack of morphological detail as revealed by NADPH-d, type Il
cells were not included in our analysis. Conversely, type |
cells were intensely labeled with sharp tapering dendrites
(Figs. 1B and 2). The overall morphology of type | neurons
was quite diverse, including multipolar, stellate, and bipolar
cells (Fig. 2B-D).

Qualitative evaluation of type | NADPH-d neurons mor-
phology in the different hemispheres analyzed did not point
to any apparent differences inside a given cortical area.
For instance, aspects like dendritic size, cell body location,
labeling intensity, dendritic orientation, and distribution
along the cortical area did not seem to differ. We thus
assumed that any type | neuron would be an equally good
representative for the quantitative analysis, provided its
dendritic arbor is complete.

The morphology of type | neurons was then quantified
using seven morphometric parameters (see Experimental
procedures). There was no significant difference in cell
body areas among primary sensory regions (S1: 255.34+
5.54 um?, A1: 271.54+13.03 um?, V1: 267.88+8.09 um?)
(Fig. 3A). Conversely, dendritic field areas were signifi-
cantly different among areas: neurons in S1 had larger
dendritic fields than both A1 and V1 cells (S1: 35.31+
0.94x10% pum?; A1: 29.70+1.09x10% um?; V1: 24.34+
0.97x10%® um?) (Fig. 3B). The same occurred with the
number of dendrites by order: neurons located in V1 had
fewer ramifications than those in A1 and especially than in
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Fig. 1. NADPH diaphorase-reactive neuropil and NADPH diaphorase neurons across primary sensory areas. (A) Left side: tangential section across
layer IV reacted for NADPH-d histochemistry. Neuropil reactivity allows identification of primary auditory (A1), somatosensory (S1), and visual (V1)
areas. The white arrowhead points to the rhinal fissure. (A) Right side: reconstruction of the flattened cortex showing the limits of primary areas,
including S1 subdivisions, and the estimated location of NADPH-d neurons reconstructed in A1, S1, and V1 from three different cases, represented
by distinct symbols (circles, triangles, and stars—each symbol representing cell from a different animal). (B) Examples of NADPH-d neurons from the
three primary areas analyzed. Each column corresponds to the cortical area depicted in the photomicrograph. Three morphometric parameters are
illustrated for every reconstructed neuron: cell body area (Cb), dendritic field area (Df), and fractal dimension (D). Neurons found in S1 display a more
complex dendritic morphology than those located in A1 and V1. Neurons in V1 present the least complex dendritic morphology. The values of Cb, Df
and D reported in the bottom of the reconstructions correspond to values from the individual cells illustrated. Scale bars: 1 mm (A); 30 um (B). Legends:
PMBSF: posteromedial barrel subfield; LI: lower lip; Ul: upper lip; fl.: forelimb; HI: hind limb; Tk: trunk.
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Fig. 2. Morphology of NADPH-d cell types | and Il. (A) Type | neurons have considerably larger cell bodies, more exuberant dendritic fields and stain
more heavily than type Il neurons (arrows). (B—D) The overall morphology of type | neurons was quite diverse, including stellate (B), multipolar (C),
and bipolar (D) (arrows). Arrowheads: blood vessels. Scale bars: 50 um (A); 100 um (B-D).

S1. The maximum ramification occurred in the second order
dendrites for all groups (Fig. 3C). In all groups, second order
dendrites were the longest (Fig. 3D). In addition, neurons in
S1 had larger total dendritic length than A1 and V1 (S1:
951.80+26.61 wm; A1: 754.31+23.84 um; V1: 630.45+
19.09 wm) (Fig. 3E). Sholl analysis revealed that NADPH-d
neurons in V1 were less ramified than those in A1. S1 cells
had the most complex dendritic arborization, having more
ramifications than both A1 and V1, mainly in a distance
between 75 and 125 um from the cell body (intermediary
dendrites) (Fig. 3F).

The higher morphological complexity of S1 interneu-
rons, as compared to those of V1 and A1, was further
corroborated by the fractal (dilation and mass radius meth-
ods) and convex hull analysis. Both fractal measurements
pointed out that S1 neurons have more complex dendritic
trees than both A1 and V1 neurons, with the latter having
the simplest dendritic trees (S1: dilation: 1.385+0.020;
mass radius: 1.412+0.022; A1: dilation: 1.307+0.038;
mass radius: 1.346+0.018; V1: dilation: 1.216+0.028; mass
radius: 1.267+0.014) (Fig. 4A, B). The convex hull analy-
sis corroborated this tendency: V1 interneurons were sig-
nificantly less complex than those in both A1 and S1.
Values for A1 cells were intermediary between S1 and V1
(V1: 1.348+0.041; A1: 1.477+0.047; S1: 1.543+0.053;
P<0.01) (Fig. 4C). Performing a statistical comparison
with “n” as the number of animals, the statistical results
were similar to those obtained evaluating “individual neu-
rons” (Table 1).

According to the analysis of variance, dendritic com-
plexity (measured by the dendritic field area and fractal
dimension) explains most morphologic variance within
sensory areas (Fig. 5A). In every sensory area, correlation
analysis between pairwise combinations of morphometric
parameters showed a positive and significant correlation
between fractal dimension and dendritic field area (S1:
r=0.7651, P=0.020532; A1: r=0.57222, P=0.04958; V1:
r=0.66858, P=0.043786) (Fig. 5B). Fig. 6A shows the
explained variances for the components of each neuro-
nal attribute (area of cell body, dendritic field area and
fractal dimension). Areas V1, A1, and S1 were grouped
together to see how they covariate according to each
attribute. According to PCA analysis, fractal dimension
exhibits the maximum variance in the first component,
suggesting that this attribute is most correlated along
the three areas. Fig. 6B shows the explained variances
for each component considering each cortical area (V1,
A1, and S1). The neuronal attributes were grouped to
verify how they covariate in each area. In this case, the
information is more uniformly distributed, with no evident
tendency toward any attribute’s direction. Fig. 6C shows
linear regression crossing for each first component of
every cortical area, by extracting the covariance of neu-
ronal features.

Cluster analysis of neuronal morphological data

Fig. 7 shows the dendrograms obtained from cluster anal-
ysis performed on data from all 120 neurons in our sample.
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Fig. 3. Morphometric analysis of NADPH-d type | neurons in primary sensory areas S1, A1, and V1. (A) Cell body areas are not significantly distinct
across cortical areas (P>0.05). (B) Dendritic field areas are significantly different, with neurons found in area S1 having the largest dendritic coverage
(* P<0.05 and ** P<0.01, respectively; Kruskal-Wallis Bonferroni post hoc test). (C) In all three cortical areas, second order dendrites are more
numerous (* P<0.05). (D) Second order dendrites are longer than first, third, fourth, and fifth order dendrites in all three areas (* P<0.05). More distal
dendrites are significantly shorter as compared with the proximal and intermediate ones (# P<0.01). (E) Neurons of S1 had the longest dendrites, as
compared with A1 (* P<0.05) and V1 (** P<0.01). (F) Sholl analysis revealed that NADPH-d neurons in S1 have a more exuberant dendritic

arborization, followed by A1 and V1 cells.

By using a multivariate analysis, we were able to sepa-
rate three groups of cells, each one in a distinct cortical
region. Particularly, when comparing V1 and S1, 15% of
the neurons from the former clustered with the latter,
whereas 17% of S1 neurons clustered with the V1 group
(Fig. 7A). When neurons from S1 and A1 are compared,
only 6% neurons from A1 clustered with S1, whereas
18% of the neurons from S1 were also found in the A1
cluster (Fig. 7B). On the other hand, the A1XV1 com-
parison produced clusters that were the least segre-
gated, with 28% V1 neurons clustering with the A1
group, whereas 35% of A1 neurons clustered with the
V1 group (Fig. 7C). The higher the values observed in
y-axis of dendrograms the more distantly related the
clusters are (S1xV1, Fig. 7A, A1xV1, Fig. 7C). Con-
versely, S1XA1 clusters are closest to each other, as
attested by the lesser value of Euclidean distance be-
tween them (Fig. 7B).

The discriminant analysis indicated that the four major
variables contributing to cluster separation were dendritic
field area, total length of dendrites, fractal dimension, and
convex hull number (Table 2). As mentioned previously,
discriminant analysis showed that S1 neurons had higher
dendritic complexity than cells found in both V1 and A1
(P<0.05). V1 neurons were always less complex than
those found in both S1 and A1 (P<0.05). Cell body size did
not contribute significantly to group formation, according to
discriminant analysis (P>0.05).

DISCUSSION

We evaluated how the morphology of interneurons stained
with NADPH-d varies across the cortical primary sensory
areas of the rat. Our principal result was that neurons in S1
have a much more complex dendritic arborization than
those located in both A1 and V1, with V1 neurons having
the simplest dendritic arbors. These findings were corrob-
orated by a statistical analysis of quantitative morphologi-
cal data, which showed that neurons in our sample clus-
tered in three groups with distinct morphologies. We dis-
cuss the significance of these findings below.

Neuropil reactivity and types of NADPH-d neurons

The general pattern of NADPH-d-reactive neuropil al-
lowed a clear distinction of areal borders and the relative
location of cortical areas S1, A1, and V1. The results
reported here for the rat corroborate and extend previous
descriptions of NADPH-d as an outstanding marker of
primary areas in distantly related species (Franca et al.,
1997, 2000; Freire et al., 2010). In addition, the boundaries
of primary sensory cortical areas defined by NADPH-d—
reactive neuropil are markedly similar to those defined by
electrophysiology and other histochemical markers in the
rat, such as cytochrome oxidase (CO) and succinate
dehydrogenase (SDH) (Woolsey, 1967; Wallace, 1987;
Remple et al., 2003). Because nitric oxide acts as a retro-
grade messenger that increases the activity of presynaptic
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terminals (Garthwaite, 2008), the correspondence be-
tween the histochemical labeling of NADPH-d and CO in
primary areas can be explained by the higher energetic
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metabolism necessary to maintain neural activity in these
cortices (Wong-Riley et al., 1998).

We identified two morphologically distinct groups of
non-pyramidal NADPH-d-reactive interneurons across pri-
mary sensory areas of the rat, one with large cell bodies
and a highly ramified and reactive dendritic arborization
(type 1), whereas the other is characterized by small and
faintly stained cell bodies, without reactive dendrites (type
II). Although the presence of the former group has been
confirmed in every mammalian species studied so far (De-
Felipe, 1993b; Xiao et al., 1996; Franca et al., 1997, 2000;
Barone and Kennedy, 2000; Hassiotis et al., 2005; Freire
et al., 2008, 2011), the universality of type Il neurons is still
a matter of some controversy because an early study
claimed it could not be found in rodents (Yan and Garey,
1997). However, our group have already provided un-
equivocal evidence for the presence of type [| NADPH-d—
reactive cells in the rodent brain (Freire et al., 2004, 2005),
suggesting that previous failure in detecting these cells
might be due to methodological issues. Knowing that more
intense tissue fixation can decrease NADPH-d histochem-
ical activity (Spessert and Layes, 1994), we suggested that
detection of NADPH-d type Il cells would be impaired by
intense fixation, either because type Il cells express less
enzyme than type | neurons or because they express an
enzyme subtype that is more sensitive to fixatives, or both.

Morphometric differences as an evidence of the
cortical heterogeneity

There are two hypotheses to explain the microstructure of
the mammalian cerebral cortex. The first one posits that
the neocortex is composed of repeated columns of cells
that form a canonical microcircuit (Douglas et al., 1989;
Mountcastle, 1997; Binzegger et al., 2004). This hypothe-
sis is based in electrophysiological evidence (such as top-
ographic maps and receptive field properties) and the ste-
reotyped laminar and columnar input-output organization
of the cortex (Kaas, 1987; Schubert et al., 2007). The
other, conversely, states that neuronal structure and pat-
terns of connectivity vary widely throughout the cortex and
that there is no such thing as a canonical circuit (Nelson,
2002; Elston, 2003; Horton and Adams, 2005). If we as-
sume that the former hypothesis is correct, regional differ-
ences in primary cortical function (hearing, vision, and
somatosensory processing) might be attributed essentially
to the source of their inputs. Nevertheless, if we accept the
latter as correct, as described to pyramidal cells (Bena-
vides-Piccione et al., 2006), probably the differences in the

Table 1. Statistical comparison of morphometric variables across primary areas considering “n” as number of animals

Variable Cortical area P
Cell body area (um?) S1: 258.19+7.96% A1: 273.94+4.26% V1: 262.9++19.63% >0.05*
Dendritic field area (x10% pm?) S1: 35.77+1.12* A1:30.21+1.11** V1: 24.7+1.06** <0.05*
Total dendritic length (um) S1: 961.27+£32.47 ** A1: 742.52+27.57 ** V1: 634.29+28.43 ** <0.01**
Fractal dimension (dilation) S1: 1.544+0.038** A1: 1.424+0.059* V1: 1.292+0.047**

Fractal dimension (mass radius) S1: 1.596+0.074** A1: 1.484+0.053* V1: 1.376+0.049**

Convex hull S1: 1.477+0.025* A1: 1.346+0.018* V1: 1.247+0.034*
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circuitry should not to be restricted to a specific type of
neuronal group. Accordingly, our data are more in agree-
ment with the latter proposal: the morphology of NADPH-d
type | neurons differ significantly among the rat’s primary
sensory areas. Both the cellular distribution and morpho-
logical heterogeneity of NADPH-d neurons actually seem
at odds with the existence of repeated copies of a canon-
ical circuit across the cerebral cortex (Douglas and Martin,
2004). We had already demonstrated that the distribution
of these cells is not uniform in rat’s brain: the density of
NADPH-d neurons is higher in somatosensory than in the
visual cortex (Franca et al., 2000). This seems to be a
general rule that applies not only to the rat but also to

monkeys and even to non-eutherian mammals like the
opossum (Franca et al., 2000).

Although these data are compelling arguments against
the canonical microcircuit proposal, we cannot entirely
exclude the possibility that a repetitive cortical circuit ap-
peared early in evolution of the neocortex and that, later,
novel neuronal populations were added to this basic cir-
cuit. As the neocortical sheet evolved through phylogeny
and new cortical areas appeared by duplication (Krubitzer,
1995), new circuit elements could have been added in
some cortical areas but not in others. Distribution and
morphology of these new populations would not obey the
original ontogenetic rules that defined cellular distribution
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and morphology of the primordial cortical circuit elements.
Because of the characteristic heterogeneous spatial distri-
bution and morphology of NADPH-d neurons along the
cortical sheet (Franca et al., 2000; Freire et al., 2010) we
do rule out the possibility that this subpopulation of inhib-
itory neurons is part of a repetitive microcircuit as proposed
by Douglas and Martin (2004). Because GABAergic inhib-
itory interneurons should definitively be part of a putative
canonical microcircuit, further studies about the spatial
distribution of other subcategories of inhibitory interneu-
rons should be performed to clarify this issue. In addition,

the quantification of NADPH-d neuronal morphology in
non-primary/association areas also can undeniably pro-
vide a more complete notion of cortical differences in the
inhibitory circuitry.

Here we characterize a significant difference in the
ramification of dendritic trees of NADPH-d type | cells
across primary areas in the rat: neurons become increas-
ingly larger and progressively more branched in these
areas along the caudorostral axis. For instance, cells in S1
were, on average, about 31% larger and 30% more
branched than those in V1. These morphological differ-
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branch denote the identification number of a single reconstructed NADPH-d neuron and the cortical area to which it belongs. To better evaluate the

clustering, the color of branches, letters, and numbers that refer to individual neurons are either gray or black, corresponding to one of the two different
cortical areas compared in each dendrogram (i.e. V1 vs. S1, S1vs. A1, or V1 vs. A1). Neurons found in S1 and V1 tended to be located at the extremes

of this distribution (A). A1 neurons, conversely, tended to be grouped in the center, when compared with S1 cells (B). Neurons of A1 and V1 were found

to be less segregated from each other (C).
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Table 2. Summary of discriminant function analysis for all variables
evaluated

Variable Cortical area P

Cell body area S1vs. A1* S1vs. VI*  A1vs. V1* >0.05"

Dendritic field S1vs. A1* S1vs. V1™ A1vs. V1* <0.05*
area

Number of S1vs. A1* S1vs. V1™ A1vs. V1* <0.01*
dendrites by
order

Dendritic length S1vs. A1* S1vs. V1™ A1lvs. V1*

Branching S1vs. A1* S1vs.V1* A1lvs. V1*
complexity
(Sholl analysis)

Fractal S1vs. A1* S1vs. V1** A1vs. V1*
dimension—
dilation

Fractal S1vs. A1* S1vs. V1™ A1vs. V1*
dimension—
mass radius

Convex hull S1vs. A1* S1vs. V1™ A1vs. V1*

ences of NADPH-d neurons across the rat’s brain appear
to point out a wide-ranging feature in the rodent brain,
because these cells become progressively more complex
throughout the visual areas of the agouti, a typical Ama-
zonian rodent (Freire et al., 2010). How would these spe-
cializations in neuronal morphology influence cortical pro-
cessing? Small rodents are usually nocturnal species, pos-
sessing very specialized tactile organs, the facial whiskers,
which help them navigate in darkness (Vasconcelos et al.,
2011). A thick bundle of low-threshold sensory axons con-
nects the whiskers through intervening relay nuclei to the
barrel field in S1. Vision and audition, by contrast, are
relatively less developed in rats (Hoeffding and Feldman,
1988). Thus, the relatively more complex pattern of den-
dritic arborization observed in S1 compared with V1 could
reflect the prominence of tactile-mediated behavior in the
rat. It is conceivable that area-specific developmental fac-
tors that either restrict or stimulate the number of NADPH-d
neurons are also acting to inhibit or stimulate their dendritic
development. Moreover, these structural differences could
reflect a modality-driven specialization in the processing of
sensory information (Nelson, 2002). The heterogeneous
morphology of the dendritic field in cortical interneurons,
for instance, could mean a difference in their capacity for
synaptic integration because dendritic coverage is directly
related to the amount of synaptic contacts a cell can re-
ceive. So, neurons possessing a smaller dendritic arbor
cover a small cortical area and potentially establish fewer
synaptic contacts than more ramified cells, given that dif-
ferences in microcircuitry are likely to be instrumental in
determining neuronal function throughout the cortex.
Additionally, NADPH-d-reactive cells are a source of
NO. This substance is implicated in several important
physiological and pathological functions in the brain, in-
cluding plasticity, neuroprotection, and neurotoxicity (Cala-
brese et al., 2007; Freire et al., 2009; Guimaraes et al.,
2009; Steinert et al., 2010; Pietrelli et al., 2011). In partic-
ular, NO seems to be directly involved in the coupling of
cerebral blood flow with demands of brain activity (lade-

cola et al., 1993; Schottler et al., 1996; Estrada and De-
Felipe, 1998; Govsa and Kayalioglu, 1999). Its association
with NPY, a powerful vasoconstrictor (Vincent et al., 1983),
raises interesting possibilities about their combination and
the fine regulation of blood flow in specific cortical areas
throughout functional activity. While NO release by the cell
body and dendrites produces local vasodilation, this effect
may be restricted distally by the vasoconstrictive action of
NPY released by the neuron axon. By this mechanism, the
vasodilation would be circumscribed to the area around the
neuronal soma and dendrites (Estrada and DeFelipe,
1998). This may have important implications for the phys-
iological role of type | NADPH-d neurons in rat barrel
cortex, given that as more ramified a cell is the greater is
the influence it can exert in a specific cortical area. Cells
inside barrel hollows are thus in a good position to control
most efficiently blood flow toward the center of the barrels,
a highly metabolic and vascularized region (Woolsey et al.,
1996). Additional work is nonetheless needed to evaluate
whether NADPH-d neurons inside barrels display different
morphological features as compared with those in septal
cortex of the rat.

Methodological considerations

In the present work, we reconstructed only NADPH-d type
| cells, since this subgroup possesses well-labeled and
clear-cut dendritic arborizations. Type Il neurons, con-
versely, presents small sized cell bodies and weakly
stained or even non-reactive dendritic trees that prevents
their reconstruction, unless they are marked with intracel-
lular injected labels like Lucifer Yellow (Kubota et al.,
2011). On the same token, there is no intrinsic guarantee
that based on the NADPH-d label only, the dendritic arbors
of the type | cells selected here for reconstruction are
complete. Nonetheless, we can rely on NADPH-d as a
marker for the presence of constitutive nitric oxide activity
in these cells. Thus, it remains to be clarified by further
studies using intracellular labeling of type | NADPH-d neu-
rons whether nitric oxide synthase activity is in fact wide-
spread throughout the whole dendritic arbor or whether it is
compartmentalized along the cell.

Additionally, despite the fact that we tried not to recon-
struct neurons with sectioned dendrites (i.e. dendrites with-
out a tapering profile), it is likely that in some of them part
of the dendritic tree was missing, especially in those ver-
tically oriented neurons. This is because type | neuron
dendrites can extend over 175 um (Fig. 3F), at least in
the horizontal/tangential plane and our reconstructions
were performed in 100-um-thick sections. Nevertheless,
despite the possibility of such a bias, this methodological
issue would not explain the morphological differences we
found when neurons from different cortical areas are com-
pared, unless if type | cells in V1 were predominantly
vertically oriented as compared with those in S1 and A1,
which was not the case. Further analysis of the spatial
distribution of the dendritic arborization in non-tangential
planes of section is thus needed to elucidate if dendritic
arbor orientation differs in different cortical areas.
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In the present work, we chose to separate the cortical
sheet from other subcortical structures and then flatten the
tissue between two glass slides. Tissue flattening is espe-
cially useful to analyze anatomical data obtained from
highly convoluted brains (Gharbawie et al., 2011). Taking
advantage of the two-dimensional sheet topology of the
cortical surface, cortical tissue flattening facilitates the col-
lection and interpretation of anatomical data by optimizing
the plane of section. This occurs because the curved cor-
tical surface is made parallel to the cutting knife by the
flattening process. This procedure potentially brings to
single-section profiles that would otherwise be dispersed in
different transverse histological sections. Additionally, flat-
tening procedures associated with a tangential plan of
section is also advantageous because it allows a global
view of the cortical areas of interest in only one section
(Rocha et al., 2007; Freire et al., 2010) that would not be
feasible using other plans of sectioning. With such global
appreciation of areal boundaries, we ensured that the neu-
rons selected for reconstruction were unequivocally lo-
cated in cortical areas of interest (S1, A1, or V1), thus
preventing that cells located in adjacent areas were incor-
rectly selected. Finally, although it is mathematically im-
possible to flatten curved surfaces without metric and area
distortion (Hurdal and Stephenson, 2009), it is worth noting
that in lissencephalic brains morphological distortion
caused by flattening should be minimal not only because
the angle that defines the curve of the cortical sheet is wide
(around 120 degrees in gross estimation), but also be-
cause the horizontal range of NADPH-d dendritic arbors
reconstructed in the present work is very short when com-
pared with the total range of the flattened cortical sheet.

There are several methodological issues that have to
be taken into consideration related to tissue shrinkage and
other structural modifications introduced by tissue pro-
cessing. For instance, due to mechanical factors associ-
ated with the sectioning apparatus (a vibratome, in our
case), the section surface can be uneven and asymmetri-
cal. As for the z dimension (i.e. depth), actual thickness of
histological sections tends to be much smaller than that set
for microtomy in the vibratome. Thus, estimates of modifi-
cations in the x/y dimensions during tissue processing
cannot be linearly extrapolated to the z dimension. These
are methodological constraints that are difficult to over-
come. However, it is important to note that an indicative of
a severe shrinkage in z-axis is the curling of dendrites,
signifying that individual processes did not shrink at the
same rate as the slice in which they are located (Jaeger,
2000). This pattern was not observed in the reconstructed
cells of our study (see Fig. 1).

CONCLUSION

It is possible to group, according to their morphological
characteristics, NADPH-d neurons in discrete clusters cor-
responding to different primary sensory areas of the rat,
most likely reflecting an intrinsic specialization of the inhib-
itory circuitry throughout the cerebral cortex. This finding is
in agreement with the hypothesis that neuronal structure

vary widely across the brain. Cells increased systemati-
cally in both size and branching complexity with a cau-
dorostral progression from V1 to A1 and S1. Given that the
relatively more complex pattern of dendritic arborization
was observed in S1, this specialization may reflect the
prominence of tactile-mediated behavior in the rat. More
comparative studies evaluating other groups of inhibitory
neurons and also in non-primary/associative areas will be
useful to provide a comprehensive picture of the special-
izations in the inhibitory circuitry across rodent sensory
areas.
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